
Toward an Efficient User Interface for
Block-Based Visual Programming

Yota Inayama Hiroshi Hosobe
Faculty of Computer and Information Sciences

Hosei University
Tokyo, Japan

hosobe@acm.org

Abstract—Block-based visual programming (BVP) is becoming
popular as a basis of programming education. It allows beginners
to visually construct programs without suffering from syntax
errors. However, a typical user interface for BVP is inefficient
partly because the users need to perform many drag-and-drop
operations to put blocks on a program, and also partly because
they need to find necessary blocks from many choices. To improve
the efficiency of constructing programs in a BVP system, we
propose a user interface that introduces three new features:
(1) the semiautomatic addition of blocks; (2) the use of a pie menu
to change categories of blocks; (3) the focus+context visualization
of blocks in a category. We implemented a prototype BVP system
with the new user interface.

Index Terms—visual programming, block, user interface

I. INTRODUCTION

We propose a user interface that improves the efficiency
of block-based visual programming (BVP). It introduces the
following three new features:

1) the semiautomatic addition of blocks;
2) the use of a pie menu to change categories of blocks;
3) the focus+context visualization of blocks in a category.

We implemented a prototype BVP system with the new user
interface. Our showpiece is the demonstration of this prototype
system.

II. PROBLEMS WITH EXISTING USER INTERFACES

The user interface of Scratch [5] is a representative of
those for BVP. Such user interfaces consist mainly of three
components, i.e., a set of categories of blocks, a set of
blocks in the currently selected category, and a workspace
for programming. Users of such interfaces suffer from the
following three problems:

• They need to frequently change categories of blocks;
• They need to perform many drag-and-drop operations to

construct programs;
• It is often hard for them to find necessary blocks because

there are several categories that contain many blocks.
We can explain these problems by using two well-known

principles for user interface design. The first principle is Fitts’
law [4]. It is able to predict the time length that a user needs
to point at a target on a display with a pointing device such

as a mouse. It uses the following formula to predict the time
length:

T = a+ b log2

(
D

W
+ 1

)
,

where D is the distance to the target, W is the size of
the target, and a and b are constants that are determined
experimentally. Intuitively, this law indicates that, the longer
the distance to the target is, or the smaller the size of the target
is, the longer time the user needs to point at the target. We can
see from this law that users of BVP need time to construct
programs with drag-and-drop operations and also to change
categories of blocks.

The second principle is Hick’s law [8]. It is able to predict
the time length that a user needs to select an appropriate item
from multiple choices. It uses the following formula to predict
the time length:

T = a+ b log2(n+ 1),

where n is the number of choices, and a and b are constants
that are determined experimentally. Intuitively, this law indi-
cates that, the more choices there are, the longer time the user
needs to make a decision. We can see from this law that users
of BVP need time to select a category of blocks and also to
select a necessary block from a category of blocks.

III. OUR USER INTERFACE

To improve the efficiency of constructing programs in a
BVP system, we propose a user interface that introduces
three new features. The first feature is to enable the user to
semiautomatically add a selected block to the visual program.
It reduces the time by decreasing the number of the drag-and-
drop operations for positioning blocks. In addition, it reduces
the mistakes that the user makes to position blocks when the
user drops them. In our user interface, the user first selects an
exiting block on the workspace to indicate that a new block
should be added immediately under the selected block. Then
the selected block becomes blinking (Figure 1(a)). After this,
the user can perform the semiautomatic addition of a new
block (Figure 1(b)) just by clicking it on a category of blocks.
To enable the successive addition of blocks, such a selected
block is automatically updated like a cursor moving in a text
editor. The user can also deselect such a block by clicking it.978-1-5386-4235-1/18/$31.00 c⃝2018 IEEE

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/VLHCC.2018.8506530.
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

(a) (b)

(c) (d)

Fig. 1. Our user interface for block-based visual programming.

The second feature is to enable the user to use a pie
menu [1] to change categories of blocks. A pie menu is a
circular menu where the distance from the center to each
menu item is equal and short, which allows the user to more
quickly select an item than when using an ordinary linear
menu. In addition, it reduces the mistakes that the user makes
because the user distinguishes menu items by angles. In our
user interface, the user pops up a pie menu around a mouse
pointer by pressing the right mouse button (Figure 1(c)). The
items in the pie menu correspond to the categories of blocks,
and the user can change categories by clicking menu items.
In addition, while users of exiting interfaces need to click
menu items to see the contents of categories, our user interface
allows the user to see the content of a different category only
by hovering over a menu item, which immediately shows the
corresponding category.

The third feature is to enable the user to use the fo-
cus+context visualization [3] of blocks. Focus+context vi-
sualization simultaneously shows a particular detail and the
overview of given information to enable the understanding
of the relationship between the important part and the entire
structure of the information. In our user interface, the user can
change his/her focus by moving the mouse pointer over blocks
in a category (Figure 1(d)). This allows the user to more easily
recognize blocks around the mouse pointer while viewing the
entire category of blocks at the same time. Also, it eases the
user to select a block since blocks around the mouse pointer
become larger.

IV. IMPLEMENTATION

We implemented a prototype BVP system adopting the user
interface that we proposed in the previous section. For this
purpose, we extended Kurihara et al.’s BVP system [2], which

Fig. 2. Our prototype system.

generates programs written in Processing [6]. This system is
a Web application written in HTML, JavaScript, and CSS that
runs on a Web browser by using the Processing.js [7] library.
The user interface of our prototype system consists of three
typical components, i.e., a set of categories of blocks, a set of
blocks in the currently selected category, and a workspace for
programming (Figure 2). There are six categories of blocks
that are painted with different colors.

V. CONCLUSIONS AND FUTURE WORK

We proposed a user interface for BVP that introduced three
new features. We also implemented a prototype BVP system
with the proposed user interface. Our future work includes the
experimental evaluation of the performance of the proposed
user interface by comparing it with a typical user interface for
BVP. Another future direction is to further explore possible
features, for example, for enabling users to efficiently entering
values in blocks.

ACKNOWLEDGEMENT

This work was partly supported by JSPS KAKENHI Grant
Number JP17H01726.

REFERENCES

[1] D. Hopkins. The design and implementation of pie menus. Dr. Dobb’s
J., 16(12):16–26, 1991.

[2] A. Kurihara, A. Sasaki, K. Wakita, and H. Hosobe. A programming
environment for visual block-based domain-specific languages. In Proc.
SCSE, volume 62 of Procedia CS, pages 287–296, 2015.

[3] J. Lamping and R. Rao. The hyperbolic browser: A focus+context
technique for visualizing large hierarchies. J. Visual Lang. Comput.,
7(1):33–55, 1996.

[4] I. S. MacKenzie. Fitts’ law as a research and design tool in human-
computer interaction. Human-Comput. Interact., 7:91–139, 1992.

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The
Scratch programming language and environment. ACM Trans. Comput.
Educ., 10(4):16:1–15, 2010.

[6] C. Reas and B. Fry. Processing: Programming for the media arts. AI
Soc., 20(4):526–538, 2006.

[7] J. Resig. Processing.js, 2008. https://johnresig.com/blog/processingjs/
[8] L. Rosati. How to design interfaces for choice: Hick-Hyman law and clas-

sification for information architecture. In Classification & Visualization:
Interfaces to Knowledge, pages 121–134, 2013.

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/VLHCC.2018.8506530.
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

