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ABSTRACT
Constraints have been playing an important role in the user
interface field since its infancy. A prime use of constraints
in this field is to automatically maintain geometric lay-
outs of graphical objects. To facilitate the construction of
constraint-based user interface applications, researchers have
proposed various constraint satisfaction methods and con-
straint solvers. Most previous research has focused on ei-
ther local propagation or linear constraints, excluding more
general nonlinear ones. However, nonlinear geometric con-
straints are practically useful to various user interfaces, e.g.,
drawing editors and information visualization systems. In
this paper, we propose a novel constraint solver called Cho-
rus, which realizes various powerful nonlinear geometric
constraints such as Euclidean geometric, non-overlapping,
and graph layout constraints. A key feature of Chorus is
its module mechanism that allows users to define new kinds
of geometric constraints. Also, Chorus supports “soft” con-
straints with hierarchical strengths or preferences (i.e., con-
straint hierarchies). We describe its framework, algorithm,
implementation, and experimental results.

KEYWORDS: geometric constraints, soft constraints, con-
straint solvers, module mechanisms, graph layouts

INTRODUCTION
Constraints have been playing an important role in the user
interface field since its infancy [27]. A constraint states a
relationship to be maintained, and is usually expressed as a
mathematical relation among variables. A prime use of con-
straints in this field is to obtain geometric layouts of graphi-
cal objects. Once the geometric relationship of objects is de-
fined with constraints, a constraint solver will automatically
maintain the relationship afterward, which will then result in
setting necessary object properties such as positions and di-
rections. This mechanism is effective particularly when the
layout is difficult to program with a simple loop or recursion.
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To facilitate the construction of constraint-based user inter-
face applications, researchers have proposed various con-
straint satisfaction methods and constraint solvers. Particu-
larly, they had studied local propagation (or dataflow) con-
straint solvers that perform computations according to in-
put/output relationships among variables [5, 25]. Such local
propagation solvers have an advantage that they efficiently
handle many kinds of constraints. However, they impose a
serious limitation that they can hardly deal with simultane-
ous constraints and inequalities. Therefore, researchers have
recently proposed numerical solvers for linear equality and
inequality constraints [2, 13, 19].

Although there has been much research on constraint solvers
for user interfaces, even recent linear solvers are not suf-
ficient for various real-world applications. In fact, linear
solvers do not support nonlinear constraints such as x× y =
z, which earlier local propagation solvers could treat. Also,
linear solvers do not handle Euclidean geometric constraints
such as parallelism, perpendicularity, and distance equality.
We can consider still other useful geometric constraints that
local propagation and linear solvers can hardly handle. For
example, non-overlapping constraints on two-dimensional
rectangular boxes are difficult to treat, because they are “con-
ditional” relations that cannot be defined with a fixed con-
junctive set of inequality constraints. As another example,
it is hard for these solvers to process constraints for general
graph layout, since such a constraint cannot be expressed as
a simple arithmetic relation.

Nonlinear geometric constraints are practically useful to var-
ious user interfaces. A major category is drawing editors
[14, 21]. For instance, a drawing editor in an educational
digital whiteboard system will require Euclidean geometric
constraints to handle diagrams that can be drawn with rulers
and compasses. Also, information visualization systems for
information retrieval, databases, and programming may need
to express information structures with general graph layouts
[16, 20]. Nonlinear geometric constraints are effective in ex-
pressing dynamic properties of objects in three-dimensional
spaces for virtual reality and video games [8]. Furthermore,
we can fully expect that demands for such technologies will
increase along with the speedup of computers and the en-
hancement of computer graphics.
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In this paper, we propose a novel constraint solver called
Chorus,1 which realizes various powerful nonlinear geomet-
ric constraints. In developing Chorus, we set the following
two major goals:

1. Enabling the easy introduction of new kinds of geometric
constraints. Unlike linear constraints, nonlinear geomet-
ric constraints come in a variety of forms. Therefore, it is
necessary to allow users to easily define their own kinds of
geometric constraints.

2. Supporting “soft” constraints with hierarchical strengths
or preferences (i.e., constraint hierarchies [5]). Soft con-
straints are useful for describing the default behavior of
user interface applications; for example, a soft constraint
for dragging an object layout should be ignored if the lay-
out is about to move outside its permitted area such as a
window. Many previous systems supporting local prop-
agation and linear constraints have focused on realizing
strengths. It is natural that we also need strengths even
for nonlinear geometric constraints.

To achieve the first goal, Chorus provides a module mecha-
nism that allows users to define new kinds of geometric con-
straints. We can add a new kind of arithmetic constraints
(e.g., Euclidean geometric and non-overlapping constraints)
by constructing a new constraint class with a method that
evaluates how well given variable values satisfy constraints.
Also, we can introduce a new kind of non-arithmetic (or
pseudo) constraints (for, e.g., general graph layout) by devel-
oping an evaluation module that measures how well variable
values conform to given constraint sets in yielding layouts.

To reach the second goal, Chorus adopts numerical nonlinear
optimization, by which it minimizes violations of constraints
according to their strengths. Although some kinds of geo-
metric constraints suffer from local optimal but global non-
optimal solutions, Chorus alleviates this problem by incor-
porating a genetic algorithm that stochastically searches for
global optimal solutions. Also, it implements such numerical
techniques as replaceable optimization modules.

This paper is organized as follows: We first present the
overview of the Chorus constraint solver. Second, we de-
scribe its basic mathematical framework and how to model
constraints. Next, we present its constraint satisfaction al-
gorithm and module mechanism. We then provide its im-
plementation, and show experimental results on its perfor-
mance. After giving related work and discussion, we men-
tion the conclusions and future work of this research.

THE CHORUS CONSTRAINT SOLVER
The Chorus constraint solver was designed for user interface
construction. By default, it provides linear equality, linear
inequality, edit (update a variable value), and stay (fix a vari-
able value) constraints. It can be extended to support addi-

1Chorus stands for “Constraint hierarchy optimization and resolution
system.”

tional geometric constraints. Currently, it provides Euclidean
geometric constraints such as parallelism, perpendicularity,
and distance equality, non-overlapping constraints on rectan-
gular boxes, and graph layout constraints based on the spring
model [15].

To find appropriate solutions even in over-constrained situa-
tions, Chorus supports constraint strengths in a similar way to
constraint hierarchies [5]; it obtains approximate solutions of
constraint hierarchies solved with the criterion least-squares-
better [2, 19]. Chorus externally provides four strengths re-
quired, strong, medium, and weak, and also internally
processes two strengths very strong and very weak. It
restricts the medium and weak strengths to basically linear
constraints.

Chorus adopts an editing model that incrementally constructs
constraint systems by adding or removing constraints; that is,
when a user wants to process graphical objects, Chorus al-
lows the user to obtain a solution by adding/removing neces-
sary constraints to/from the corresponding constraint system.
Also, Chorus enables the user to repeatedly update variable
values via edit constraints, which typically facilitates opera-
tions for moving objects.

The application programming interface for writing such op-
erations was designed to provide a certain compatibility with
a recent linear solver called Cassowary [2]; it allows a user
to process a constraint system by creating variables and con-
straints as objects, and adding/removing constraint objects
to/from the constraint solver object.

BASIC FRAMEWORK
This section provides our basic framework for modeling con-
straints and constraint systems. In this framework, it uses x
to represent a variable vector (x1, x2, . . . , xn) of n variables,
and also v to indicate a variable value vector (v1, v2, . . . , vn)
of n real numbers (vi expresses the value of xi).

Constraints
To support various geometric constraints in a uniform man-
ner, Chorus adopts error functions as a means of expressing
constraints. An error function e(x) is typically associated
with a single arithmetic constraint (sometimes with a set of
non-arithmetic constraints), and is defined as a function from
variable value vectors to errors expressed as non-negative
real numbers; that is, e(v) gives the error of the associated
constraint(s) for v. For an ordinary error function associated
with an arithmetic constraint, it returns a zero if and only if
the constraint is exactly satisfied.

We assume that, for each e(x), its gradient is known:

∇e(x) =
(

∂e

∂x1
,

∂e

∂x2
, . . . ,

∂e

∂xn

)

However, whether gradients are actually used depends on the
numerical optimization techniques. For example, a quasi-
Newton method requires gradients, while Powell’s method
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does not [4]. Usually, the use of gradients will result in faster
computation.

Constraint Systems
In the same way as constraint hierarchies [5], constraint sys-
tems in our framework can be divided into levels consist-
ing of constraints with equal strengths. Constraints with the
strongest preference are said to be required (or hard), and are
guaranteed to be always satisfied (if it is impossible, there
will be no solution). By contrast, constraints with weaker
preferences are said to be preferential (or soft), and may be
relaxed if they conflict with stronger constraints.

Solutions of constraint systems are defined as follows: let
ei,j(x) be the error function of the j-th constraint (1 ≤ j ≤
mi) at strength level i (0 ≤ i ≤ l); then solutions v are
determined with the following optimization problem:

minimizev E(v)
subject to e0,j(v) = 0 (1 ≤ j ≤ m0)

(1)

where E(x) is an objective function defined as

E(x) =
l∑

i=1

mi∑
j=1

wiei,j(x)

in which wi indicates the weight associated with strength i,
and the relation w1 � w2 � · · · � wl holds. In this for-
mulation, level 0 corresponds to required constraints, and the
others to preferential ones. Intuitively, more weighted (or
stronger) preferential constraints should be more satisfied.

Our framework simulates constraint hierarchies. Particularly,
if the squares of constraint violations are used to compute er-
ror functions, a system in our framework will obtain approx-
imate solutions of the similar hierarchy solved with the crite-
rion least-squares-better [2, 19]. The largest difference is that
a system in our framework slightly considers a weak con-
straint inconsistent with a stronger satisfiable one in comput-
ing its solutions, while the similar hierarchy would discard
such a weak one. However, the approximation will become
better if each weight wi is much larger than wi+1.

MODELING CONSTRAINTS
This section describes how to actually define constraints in
our framework.

Arithmetic Equality Constraints
We can naturally model ordinary arithmetic equality con-
straints by using error functions. Usually, it is a simple task
that consists of computing the squares of the difference be-
tween the left- and right-hand sides of the original equations.

For example, the Euclidean geometric constraint that forces
the distance between points (xi, xj) and (xi′ , xj′ ) to be xk

can be built as

e(x) =
(√

(xi − xi′ )2 + (xj − xj′ )2 − xk

)2

. (2)

As another example, a constraint on an angle between two
line segments is defined as follows: Let p1 = (xi1 , xj1 ),
p2 = (xi2 , xj2), p3 = (xi3 , xj3), and p4 = (xi4 , xj4). Sup-
pose that the constraint equates the angle between vectors
(p2 − p1) and (p4 − p3) to xk. Then we can define its error
function as

e(x) =
(

(p2 − p1) · (p4 − p3)
|p2 − p1||p4 − p3|

− cos xk

)2

(3)

where “·” indicates the dot (inner) product of two vectors.
Conditional Constraints
In the previous subsection, we could express each error func-
tion by using a single expression. However, it is not always
possible because some constraints require different expres-
sions depending on conditions. We refer to such constraints
as conditional constraints.

The simplest conditional constraints are inequalities. An er-
ror function for an inequality constraint can be defined by
using two expressions associated with two cases: if the in-
equality holds for a given variable value, the error function
returns a zero; otherwise, it returns the value of the constraint
error in the same way as equality constraints.

A more complicated example is non-overlapping constraints
on rectangular boxes (here we assume that the sides of each
box are always either horizontal or vertical). Such non-
overlapping constraints are quite useful since this kind of
boxes are frequently used in current two-dimensional graph-
ical user interfaces.

Consider a box with opposite vertices p1 = (xi1 , xj1 ) and
p2 = (xi2 , xj2 ) (p1 ≤ p2) and another with p3 = (xi3 , xj3)
and p4 = (xi4 , xj4) (p3 ≤ p4). Then the non-overlapping
constraint on these two boxes can be expressed as

xi2 ≤ xi3 ∨ xi4 ≤ xi1 ∨ xj2 ≤ xj3 ∨ xj4 ≤ xj1 . (4)

To model non-overlapping constraints in our framework, we
need to define an error function for (4). A possible definition
of it is

e(x) =
{

0 if (4) holds
(dxdy)2 otherwise

where

dx = min{xi2 − xi3 , xi4 − xi1}
dy = min{xj2 − xj3 , xj4 − xj1}.

Intuitively, dx (dy) indicates the smaller of the violations of
xi2 ≤ xi3 and xi4 ≤ xi1 (xj2 ≤ xj3 and xj4 ≤ xj1 ), and
decreasing the error function reduces dx and/or dy .

Non-Arithmetic Constraints
We sometimes need non-arithmetic constraints whose error
functions cannot be represented as arithmetic expressions. A
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typical example is node connection constraints for general
graph layout that have been incorporated in certain user in-
terface systems [16]. Since laying out general graphs needs
to consider overall node positions, it is hardly possible to
evaluate node connection constraints individually. There-
fore, we can regard node connection constraints as being
non-arithmetic.

To handle general graph layouts, we adopt force-directed al-
gorithms (see [28] for a survey). Generally, they consider
a dynamic system in which every two graph nodes are con-
nected with a spring, and they obtain a set of node positions
that minimizes the total energy of all the springs.

We use such energy functions as error functions in our frame-
work; that is, instead of individually minimizing an error
function for each constraint, we minimize a single “aggre-
gate” error function for all graph layout constraints.

Now we present how to actually define an error function for
graph layout constraints by using the spring model [15]: Let
ps = (xis , xjs) be the position of node s (1 ≤ s ≤ S). Then
the error function is defined as

e(x) =
∑
s<t

1
2
kst(|ps − pt| − lst)2

where kst = K/d2
st and lst = Ldst with a certain con-

stant K , the ideal length L of a single edge, and the graph-
theoretic shortest path distances dst between nodes s and t
(note that the model considers a spring between every pair of
nodes connected indirectly as well as directly).

Remarks
In practice, we are restricted in defining error functions.
For example, some may want to use the absolute values of
constraint violations instead of their squares (e.g., e(x) =
|√(xi − xi′)2 + (xj − xj′ )2−xk| instead of (2)). Although
it is theoretically permissible, it is practically inappropriate
because it results in a worse convergence at solutions. Ac-
cording to our experience, to use the squares of constraint
violations is usually a good idea.

In modeling constraints, it should be better to guarantee the
“smoothness” of their error functions. It can be verified by
examining the continuity of their gradients. In particular, this
is important for conditional constraints.

It is sometimes necessary to “scale” errors of constraints. We
mainly need this to balance the effects of constraints with
equal strengths. For example, our current implementation
scales up the errors (3) of angle constraints by 100 times to
match them with the errors (2) of distance constraints, which
we determined empirically.

ALGORITHM
This section proposes an algorithm for solving constraint sys-
tems described above.

Processing Required Constraints
This algorithm first processes required linear equality con-
straints. It converts the optimization problem (1) into the
following problem with a new objective function E(x′) by
solving the required linear equality constraints and then elim-
inating possible variables:

minimizev′ E(v′)
subject to ε0,jk

(v′) = 0 (1 ≤ k ≤ m′
0)

(5)

wherem′
0 is the number of the required constraints other than

the linear equations, and each ε0,jk
(x′) is an error function of

such a required constraint.

We perform the conversion as follows: Without loss of gen-
erality, we can assume x′ = (x1, x2, . . . , xn′), which means
that variables xn′+1, . . . , xn are eliminated from x. First, the
required linear equality constraints are transformed into

xn′+i = fi(x′) (1 ≤ i ≤ n − n′)

where each fi(x′) is a linear function. Then E(x′) is com-
puted as

E(x′) = E(x1, . . . , xn′ , f1(x′), . . . , fn−n′(x′)).

Also, each j-th element of the gradient∇E(x′) is

∂E
∂xj

=
∂E

∂xj
+

n−n′∑
i=1

∂E

∂xn′+i

∂fi

∂xj

where ∂fi/∂xj is the coefficient of xj in fi(x′).

Local Search
To solve the optimization problem (5), this algorithm exploits
numerical nonlinear optimization. The aim is to search for
local optimal solutions since ordinary numerical optimiza-
tion techniques cannot always find global optimal solutions.

An example of numerical optimization techniques is a quasi-
Newton method [4], which is also known as a variable metric
method. This technique is a fast iterativemethod that exhibits
superlinear convergence. Since it excludes fruitless searches
by utilizing its history, it is usually faster than straightforward
Newton’s method. The current Chorus constraint solver ac-
tually provides it as a numerical optimization technique.

The techniques for numerical optimization also need to han-
dle required constraints other than linear equations, which
cannot be eliminated with the preprocess for required con-
straints. However, since many techniques including the
quasi-Newton method cannot realize this directly, such tech-
niques treat the remaining required constraints as preferential
ones with the special strength very strong instead.

The weight wi associated with each preferential constraint
must be determined according to the precision of the nu-
merical optimization technique. For example, the number of
the significant decimal figures of the quasi-Newton method
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is at most nine when the 64-bit double precision is used.
Therefore, Chorus assigns weights 324, 323, 322, 321, and
1 to strengths very strong, strong, medium, weak,
and very weak respectively.2 To know how much these
weights affect solutions, suppose a system of strong con-
straint x = 0 and medium one x = 100. Then the unique
solution will be obtained as x = 3.0303 · · · (= 100/33) by
minimizing 323(x − 0)2 + 322(x − 100)2 (= 322{33(x −
100/33)2+320000/33}). Thus the difference of strengths is
obvious. According to our actual experience, this precision
allows us to discriminate constraint strengths in most user
interface applications.

Global Search
To alleviate the weakness of numerical optimization tech-
niques suffering from local optimal solutions, we adopt a ge-
netic algorithm [11, 17] that searches for global optimal so-
lutions. Generally, a genetic algorithm is a stochastic search
method that repeatedly transforms a population of potential
solutions into another next-generation population.

Figure 1 shows a pseudo program of the genetic algorithm
used here. The algorithm first generates the initial popula-
tion of n potential solutions randomly. Then it locally opti-
mizes them by using numerical optimization techniques such
as the quasi-Newton method. After that, it repeatedly gen-
erates populations of n solutions by performing genetic op-
erators called evaluation, selection, crossover, and mutation
together with numerical optimization until it obtains a popu-
lation whose solutions have fully converged.

genetic algorithm() {
Generate the initial population of n potential solutions;
Apply numerical optimization to each potential solution;
Evaluate each potential solution;
while (the evaluation results have not converged) {
Select n pairs of potential solutions;
Crossover each pair to generate a new potential solution;
Mutate each new potential solution with a certain probability;
Apply numerical optimization to each new potential solution;
Evaluate each new potential solution; }

return the optimal solution; }
Figure 1: The pseudo program of the genetic algorithm
for global searches.

We designed the genetic operators as follows:

Evaluation: The fitness of a potential solution v is evaluated
with E(v).

Selection: n pairs of potential solutions called “parents”
(used to generate new solutions) are selected from the cur-
rent population with tournament selection [17]; to deter-
mine one parent, it first randomly picks up two potential
solutions from the current population, and then chooses the
2When we use the C++ version of Chorus on the x86 platform such as

Pentium III, we can adopt hardware support for the 80-bit long double pre-
cision. In this case, we employ the larger weights 644, 643, 642, 641, and
1 instead.

better evaluated one as the parent (overlapping selections
are permitted).

Crossover: A new potential solution called “offspring” is
reproduced from a pair of parents v1 and v2 by using lin-
ear crossover [11]; as an offspring, it randomly selects one
from (v1 + v2)/2, (−v1 +3v2)/2, and (3v1− v2)/2, which
are calculated with ordinary vector operations.

Mutation: Offsprings are mutated by randomly assigning
values to 0.5 elements of each solution vector.

Since these genetic operators preserve the variety of popu-
lations for a long period, they result in a slow convergence.
Therefore, in addition to the population size n, the actual
Chorus constraint solver takes another parameter that speci-
fies the maximum limit of possible generations.

Modifying Constraint Systems
In user interface applications, it is necessary for constraint
solvers to support the modification of constraint systems,
because such applications usually require adding new con-
straints or removing existing ones to alter geometric struc-
tures. Also, to realize interactive and animating applications,
solvers should provide edit constraints that repeatedly update
values of variables; they are typically used to change object
positions for mouse dragging and animation.

Importantly, solvers should be predictable to users [21]; that
is, in re-solving new constraint systems, they must make new
solutions as similar to previous ones as possible. Otherwise,
they will surprise or confuse users by drastic changes of re-
sulting diagrams.

Fortunately, new global optimal solutions usually exist near
previous ones. Therefore, we may usually start from previ-
ous optimal solutions and search for new local optimal ones
only by using a numerical optimization technique.

However, this method is sometimes insufficient since possi-
bly new global optimal solutions do not lie close to previous
ones. Our algorithm copes with such situations by internally
creating very weak stay constraints that try to preserve
previous variable values. Including such very weak con-
straints, the algorithm first searches for new global optimal
solutions with the genetic algorithm. After that, it excludes
the very weak constraints and then applies numerical opti-
mization to get more exact final solutions.

THE MODULE MECHANISM
The constraint satisfaction algorithm in the previous section
models each arithmetic constraint as an error function e(x),
which allows us to express arithmetic constraints as the pro-
gram to compute e(x) and its gradient ∇e(x). Thus the con-
straint solver can separately give actual meanings to con-
straints by introducing evaluation modules to compute such
functions. Also, for non-arithmetic constraints, we construct
an evaluation module that computes their error function.

We separate numerical optimization programs for local
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searches as replaceable optimization modules. As stated ear-
lier, programs for required linear equality constraint process-
ing and the genetic algorithm can be implemented indepen-
dently of numerical optimization.

With these modularizations, the constraint solver is struc-
tured as depicted in Figure 2. Object solver, the main
body of the solver, contains multiple evaluation modules and
a single optimization module optimizer.

The constraint solver works as follows: When receiving
a constraint, solver passes it to an appropriate evalu-
ation module according to the strength and kind of the
constraint (it directly handles required linear equality con-
straints without using evaluation modules). For example, it
will pass a medium linear constraint to mediumLinear-
ArithmeticEvaluator. When actually solving con-
straints, solver processes required linear equality con-
straints and performs global searches, in which it asks op-
timizer to do local searches. Then optimizer exe-
cutes numerical optimization by repeatedly calling evalua-
tion modules to compute an objective function.

Constraints and Evaluation Modules
Constraints are defined by inheriting from class Con-
straint as illustrated in Figure 3(a). Evaluation modules
inherit from class Evaluator as shown in Figure 3(b).
Each evaluation module holds a list constraints of its
own constraints, and also defines methods evaluate()
and gradient() for combining all the error functions and
gradients respectively.

Arithmetic constraints. Class ArithmeticConstraint
implements arithmetic constraints by specifying an error
function e(x) and its gradient ∇e(x) as methods evalu-
ate() and gradient().

Evaluation modules belonging to class Arithmetic-
Evaluator process arithmetic constraints. The eval-
uate() and gradient() methods of this class call
evaluate() and gradient() of its constraints and
sum up the results. In Figure 2, the evaluation mod-
ule strongArithmeticEvaluator is an instance of
ArithmeticEvaluator, and processes strong arith-
metic constraints.

To alleviate the problem with the approximation of constraint
hierarchies, we restrict medium and weak constraints to be-
ing linear (which we will discuss later). We use Linear-
ArithmeticEvaluator for these strengths by introduc-
ing it as a subclass of ArithmeticEvaluator and limit-
ing it to linear constraints.

Non-arithmetic constraints. We permit non-arithmetic con-
straints to be strong only. Unlike ArithmeticCon-
straint, classes for non-arithmetic constraints do not pro-
vide the evaluate() and gradient() methods but
simply hold information specific to individual constraints.

Instead, evaluation modules for non-arithmetic constraints
compute evaluate() and gradient() by using such
constraint-specific information.

We currently present GraphLayoutConstraint as non-
arithmetic constraints, and GraphLayoutEvaluator as
their evaluation module to realize graph layouts based on
the spring model [15]. Each instance of GraphLayout-
Constraint indicates a graph edge and holds information
about which pair of point variables it connects, which allows
programmers to specify each edge as a constraint.

Implicit constraints. In addition to explicit constraints given
externally, there are implicit ones that Chorus creates in-
ternally. Such implicit constraints are classified into two
kinds: variable domain constraints, αi ≤ xi ≤ βi, for de-
scribing the possible value ranges [αi, βi] of variables xi,
and very weak stay constraints described in the previous
section. Implicit constraints are not created as objects. If
the used numerical optimization technique for local searches
can actually handle required linear inequality constraints,
it processes variable domain constraints as required ones;
otherwise, an evaluation module instance of Variable-
DomainConstraintEvaluator realizes them as very
strong constraints by using the error functions

ei(x) = (max{0, αi − xi, xi − βi})2.

Similarly, DefaultStayConstraintEvaluator im-
plements very weak stay constraints.

Optimization Modules
Optimization modules implement numerical optimization
techniques for local searches stated in the previous sec-
tion. They are defined by inheriting from class Optimizer
and implement the method optimize(). As stated ear-
lier, whether gradients of error functions are used in opti-
mize() depends on such numerical techniques.

We currently provide two optimization modules utilizing
gradients. QuasiNewtonOptimizer performs numer-
ical optimization using the quasi-Newton method based
on Broyden-Fletcher-Goldfarb-Sahnno updating formula [4].
As described earlier, the quasi-Newton method only opti-
mizes an objective function and does not handle required
constraints. Therefore, required constraints other than linear
equations (which are not processed by solver) are approx-
imately treated as preferential, very strong constraints.

Optimization module Donlp2Optimizer exploits a non-
linear programming library DONLP2 [26], which optimizes
an objective function subject to required nonlinear con-
straints. This module processes required constraints other
than linear equations by passing them to DONLP2.

IMPLEMENTATION
We have implemented three versions of the Chorus constraint
solver: a C++ version, a pure Java version, and a Java version
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Figure 2: The object structure of the Chorus constraint solver, where solver is the external object, and contains the
evaluation and optimization modules (object:Class means that object is an instance of Class).
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Figure 3: The class hierarchies of (a) constraints and (b) evaluation modules.

using native methods that invoke the C++ implementation.
The present C++ implementation consists of approximately
seven thousand lines of code.

As shown in Figure 4, we have developed sample applica-
tions by using Chorus. We implemented them in C++ with
Gimp Toolkit (GTK+), and can compile and execute them
on both UNIX and Microsoft Windows. All of these appli-
cations provide fully interactive interfaces that allow users to
drag objects such as vertices, boxes, and graph nodes in real
time on commodity personal computers.

EXPERIMENTS
As an evaluation of the methods presented in this paper, we
provide the results of experiments on the performance of the
Chorus constraint solver in C++. We compiled programs
with GNU C EGCS-2.91.66 using the –O3 optimization op-
tion, and executed them on a personal computer with an 800
MHz Pentium III processor running Linux 2.2.14.

In the first experiment, we used the actual applications in Fig-
ure 4. We measured the times for constraint satisfaction by
using QuasiNewtonOptimizer. While the mathemati-
cal diagram in Figure 4(a) and the box layout in Figure 4(b)
do not necessitate global searches, the graph layout in Fig-

ure 4(c) requires a global search to obtain an initial solution.

The mathematical diagram in Figure 4(a) consists of 39 vari-
ables (for 17 points and 5 radii), 12 required linear equal-
ity constraints (6 for putting midpoints on triangle sides and
6 for giving initial positions to triangle vertices), 7 strong
Euclidean geometric constraints (for describing inscribed,
circumscribed, and escribed circles), and 6 weak stay con-
straints (for vertex positions). The average computation time
for ten trials of local searches for initial layouts was 187 mil-
liseconds. A single update for dragging a vertex was finished
typically within 30 milliseconds.

The box layout in Figure 4(b) uses 48 variables (for the
opposite vertex pairs of 12 boxes), 24 required linear
equality constraints (for fixing box sizes), 66 strong non-
overlapping constraints, and 24 weak stay constraints (for
box positions). The average time for ten trials of local
searches for initial layouts was 328 milliseconds. Each com-
putation for dragging a box (which possibly caused other
boxes to move) was done usually within 20 milliseconds.

The graph layout application in Figure 4(c) contains 52 vari-
ables (for 26 nodes) and 31 graph layout constraints. When it
was given the population size 10 and the maximum genera-
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(a) (b) (c)

Figure 4: Applications of the Chorus constraint solver: (a) a diagram of a triangle and its inscribed, circumscribed, and
escribed circles; (b) a non-overlapping box layout; (c) a general graph layout.

tion limit 10, the average time for ten trials of global searches
for initial layouts was 4,112 milliseconds. It obtained each
dragged layout typically within 50 milliseconds.

In the second experiment, we examined the effect of global
searches based on the genetic algorithm by using the appli-
cation in Figure 5. This application finds a ladder-shaped
graph layout consisting of a series of rectangles. Computing
this layout requires a global search, because it tends to fall
into a local optimal solution due to the twists of the ladder
shape. We must note that although this experiment illustrates
the effect of the genetic algorithm, it does not guarantee that
the algorithm always obtains global optimal solutions.

Figure 5: The application for the experiment on the
genetic algorithm.

The actual experiment used a layout with 12 rectangles, as-
signed the population size to 10 and the generation limit
to 10, and adopted QuasiNewtonOptimizer for local
searches. Figure 6 shows how the values of the objective
function E(x) changed during ten trials of global searches.
Each chart represents a trial, and in a chart, each generation
plots ten points corresponding to potential solutions. These
points are intentionally shifted right and left to be identified
even when distinct potential solutions exhibit equal values of
the objective function.

All the ten trials obtained global optimal solutions that cor-
respond to graph layouts with no twists. The average com-
putation time was 10,455 milliseconds. As shown in these
charts, global optimal solutions were rarely found initially,
but potential solutions gradually converged into the global
optimality as generations progressed.

In the final experiment, we compared the genetic algorithm
with simulated annealing, which is another stochastic algo-
rithm for global searches. We examined the quality of solu-
tions obtained by once executing simulated annealing in the
same condition as the second experiment. In this experiment,
we exploited the implementation called Simulated Annealing
Package [3]. The average time for ten trials was 748millisec-
onds. Among the ten trials, only one trial actually found a
global optimal solution, and the average number of twists in
the final graph layouts was 2.1. However, it might be possi-
ble to obtain a better result by using another implementation
of simulated annealing.3

RELATED WORK AND DISCUSSION
Local propagation constraint solvers [5, 25] can be regarded
as a method that realizes a module mechanism, because local
propagation constraints can be defined as procedures or func-
tions in ordinary programming languages. However, local
propagation solvers impose a limitation that they can hardly
deal with simultaneous constraints and inequalities.

Similarly to Chorus, constraint solvers based on numerical
optimization have been proposed for a few years [2, 13, 19].
In particular, QOCA [19] enables the modularization of con-
straint satisfaction algorithms and supports multiple criteria
for constraint hierarchy solutions. However, all of them are
specialized in linear equality and inequality constraints.

Sketchpad [27] and ThingLab [1] satisfy simultaneous (pos-
sibly nonlinear) constraints by switching to a numerical

3Although we also tried another implementation SIMANN [9], it im-
posed a problem with the accuracy of the local optimality of solutions.
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Figure 6: The experimental results of the genetic algorithm.

method called relaxation when they fail in local propagation.
Juno [21] and Juno-2 [12] use Newton’s method to solve
nonlinear geometric constraints. However, they do not pro-
vide soft constraints, and are almost incapable of handling
inequality constraints.

TRIP [16] and the system in [10] execute Newton’s method
to find graph layouts based on the spring model [15]. TRIP
supports two-level hierarchies of linear equality constraints,
but does not allow graph layout and linear equality con-
straints simultaneously. Although the latter system permits
graph layouts with soft linear constraints, it does not enable
other nonlinear constraints.

Geometric constraint solvers have also been studied in the
field of computer-aided design [7, 18, 22]. They typically
handle Euclidean geometric constraints on points and lines
(see [24] for samples). A major approach in this field is to
satisfy constraints in a “constructive” fashion by appropri-
ately placing geometric objects step by step according to the
analysis of constraint systems. Although it achieves fast and
accurate constraint satisfaction, it usually excludes soft con-
straints and inequalities, and also is not applicable to other
kinds of constraints such as graph layout constraints.

The Bramble [8] and GLIDE [23] systems realize constraint
satisfaction by running virtual dynamic simulations. They
allow users to interactively affect constraint satisfaction by

using mice; in other words, the users can help them move to
more globally optimal states. This dynamic approach might
be more appropriate to some interactive applications than us-
ing a genetic algorithm which would be slow. However, the
dynamic approach does not conform to the ordinary view of
constraints; in this approach, constraints must be defined as
forces among objects.

To solve geometric constraints, a few attempts to adopt ge-
netic algorithms have been done [6, 20]. To our knowledge,
the previous attempts have not achieved practical constraint
solvers like Chorus.

Chorus has limitations inherent in its algorithm. To search
for global optimal solutions, it adopts a genetic algorithm
which is sometimes slow for interactive applications. Fortu-
nately, we can usually realize interactive operations such as
dragging without the genetic algorithm. Also, we can easily
reduce the cost of the genetic algorithm by making its pop-
ulation size and generation limit smaller, although this may
result in less accurate solutions as a tradeoff.

Chorus solves constraint hierarchies approximately, which
sometimes produces problems in practice; unlike constraint
hierarchies, it may be erroneously affected by weak con-
straints conflicting with stronger ones. While this kind of ap-
proximation can also be found in QOCA, the approximation
of Chorus is rougher due to its nonlinearity. Particularly, the
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approximation may become worse when both bounded and
unbounded error functions are used simultaneously; a weak
constraint with an unbounded error function may seriously
influence a stronger constraint with a bounded function. To
alleviate such problems, we decided to restrict Chorus to hav-
ing only linear constraints at the medium and weak levels.
This restriction is based on our observation that, in constraint
hierarchies, strong constraints are typically used to describe
structures of geometric layouts while weaker ones are de-
fined as edit and stay (i.e., linear) constraints to give hints
for sizing and positioning the layouts. If medium and weak
constraints are used only in such a way, we can more easily
foresee problematic situations caused by the approximation.
Of course, this approach is not sufficiently satisfactory, and
we are pursuing a more substantial solution.

CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the Chorus constraint solver,
which realizes various powerful nonlinear geometric con-
straints such as Euclidean geometric, non-overlapping, and
graph layout constraints. Chorus provides a module mecha-
nism that allows users to define new kinds of geometric con-
straints, and also supports soft constraints with hierarchical
strengths.

As future work, we are planning to enhance the scalability
of constraint satisfaction and also to improve the approxima-
tion of constraint hierarchies. Other future directions are to
develop evaluation modules for more advanced graph layout
methods, and also to support three-dimensional applications.
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