
A Geometric Constraint Library for
3D Graphical Applications

Hiroshi Hosobe
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
hosobe@nii.ac.jp

ABSTRACT
Recent computer technologies have enabled fast high-quality
3D graphics on personal computers, and also have made
the development of 3D graphical applications easier. How-
ever, most of such technologies do not sufficiently support
layout and behavior aspects of 3D graphics. Geometric con-
straints are, in general, a powerful tool for specifying layouts
and behaviors of graphical objects, and have been applied
to 2D graphical user interfaces and specialized 3D graph-
ics packages. In this paper, we present Chorus3D, a geo-
metric constraint library for 3D graphical applications. It
enables programmers to use geometric constraints for vari-
ous purposes such as geometric layout, constrained dragging,
and inverse kinematics. Its novel feature is to handle scene
graphs by processing coordinate transformations in geomet-
ric constraint satisfaction. We demonstrate the usefulness of
Chorus3D by presenting sample constraint-based 3D graph-
ical applications.

Keywords
geometric constraints, constraint satisfaction, geometric lay-
out, 3D graphics, scene graphs

1. INTRODUCTION
Recent advances in commodity hardware have enabled fast
high-quality 3D graphics on personal computers. Also, soft-
ware technologies such as VRML and Java 3D have made the
development of 3D graphical applications easier. However,
most of such technologies mainly focus on rendering aspects
of 3D graphics, and do not sufficiently support layout and
behavior aspects.

Constraints are, in general, a powerful tool for specifying
layouts and behaviors of graphical objects. It is widely
recognized that constraints facilitate describing geometric
layouts and behaviors of diagrams in 2D graphical user in-
terfaces such as drawing editors, and therefore constraint
solvers for this purpose have been extensively studied [3, 7,

8, 9, 11, 12, 13, 17, 18]. Also, many specialized 3D graph-
ics packages enable the specification of object layouts and
behaviors by using constraints or similar functions.

It is natural to consider that various 3D graphical applica-
tions can also be enhanced by incorporating constraints. It
might seem sufficient for this purpose to modify existing 2D
geometric constraint solvers to support 3D geometry. It is,
however, insufficient in reality because of the essential dif-
ference between the ways of specifying 2D and 3D graphics;
typical 2D graphics handles only simple coordinate systems,
whereas most 3D graphics requires multiple coordinate sys-
tems with complex relations such as rotations to treat scene
graphs. It means that we need to additionally support coor-
dinate transformations in 3D geometric constraint solvers.

In this paper, we present Chorus3D, a geometric constraint
library for 3D graphical applications. The novel feature of
Chorus3D is to handle scene graphs by processing coordi-
nate transformations in geometric constraint satisfaction.
We have realized Chorus3D by adding this feature to our
previous 2D geometric constraint library Chorus [13].

Another important point of Chorus3D is that it inherits from
Chorus the capability to handle “soft” constraints with hier-
archical strengths or preferences (i.e., constraint hierarchies
[7]), which are useful for specifying default layouts and be-
haviors of graphical objects. It determines solutions so that
they satisfy as many strong constraints as possible, leaving
weaker inconsistent constraints unsatisfied.

Chorus3D also inherits from Chorus a module mechanism
which allows user-defined kinds of geometric constraints.
This feature enables programmers to use geometric con-
straints for various purposes including the following:

Geometric layout: A typical use of Chorus3D is to lay
out graphical objects. For example, it allows putting
objects parallel or perpendicular to others without re-
quiring predetermined positioning parameters. Also, it
provides constraint-based general graph layout based
on the spring model [14].

Constrained dragging: Chorus3D enables dragging ob-
jects with positioning constraints. For example, it
can constrain a dragged object to be on the surface
of a sphere. Constrained dragging is important for 3D
graphics because it provides a sophisticated way to ac-

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



commodate ordinary mouse dragging to 3D spaces.

Inverse kinematics: Chorus3D is applicable to inverse
kinematics, which is a problem of finding desired con-
figurations of “articulated” objects [1, 20]. It allows
the specification of articulated objects by using coor-
dinate transformations, and can automatically calcu-
late the parameters of the transformations that satisfy
constraints. This method is also applicable to camera
control by aiming at a possibly moving target object.

In this paper, we demonstrate the usefulness of Chorus3D
by presenting sample constraint-based 3D graphical appli-
cations.

This paper is organized as follows: We first present our ap-
proach to the use of constraints for 3D graphics. Second,
we describe our basic framework of constraints. Next, we
present a method for processing coordinate transformations
in our framework. We then provide the implementation of
Chorus3D, and demonstrate examples of using constraints
in 3D graphics. After giving related work and discussion, we
mention the conclusions and future work of this research.

2. OUR APPROACH
In this research, we integrate geometric constraints with 3D
graphics. Basically, we realize this by extending our previ-
ous 2D geometric constraint solver Chorus [13] to support
3D geometry. However, as already mentioned, it is not a
straightforward task because 3D graphics typically requires
handling scene graphs with hierarchical structures of coor-
dinate systems, which is not covered by the 2D version of
the Chorus constraint solver.

To support hierarchies of coordinate systems, we introduce
the following new model of constraints:

Point variables: Each point variable (which consists of
three real-valued constrainable variables) is associated
with one coordinate system, and its value is expressed
as local coordinates.

Geometric constraints: Geometric constraints on point
variables are evaluated by using the world coordinates
of the point variables (they can also refer to 1D vari-
ables for, e.g., distances and angles by using their val-
ues directly). A single constraint can refer to point
variables belonging to different coordinate systems.

Coordinate transformations: Parameters of coordinate
transformations are provided as constrainable vari-
ables, and the solver is allowed to change the param-
eters of transformations to appropriately satisfy given
constraints.

With this model, we can gain the benefit of the easy mainte-
nance of geometric relations by using constraints, as well as
the convenience of modeling geometric objects by employing
scene graphs.

In our actual implementation, we provide the following three
elemental kinds of coordinate transformations:

Translation: A translation transformation is characterized
with three variables tx, ty, and tz, and specifies the
translation of vector (tx, ty , tz).

Rotation: A rotation transformation is parameterized with
four variables rx, ry, rz, and rw, and specifies the ro-
tation of angle rw about the axis (rx, ry, rz).

Scale: A scale transformation is represented with three
variables sx, sy, and sz, and specifies the axis-wise
scale (sx, sy , sz) about the origin.

We can express many practically useful transformations by
using such elemental ones. In fact, any transformations rep-
resented with Transform nodes in VRML can be realized by
combining these kinds of transformations [4].

3. CONSTRAINT FRAMEWORK
In this section, we briefly describe our framework for han-
dling constraints. We base it on the framework for the 2D
version of the Chorus constraint solver. See [13] for further
detail.

3.1 Problem Formulation
We first present the mathematical formulation for modeling
constraints and constraint systems. In the following, we
write � to represent a variable vector (x1, x2, . . . , xn) of
n variables, and also � to indicate a variable value vector
(v1, v2, . . . , vn) of n real numbers (vi expresses the value of
xi).

To support various geometric constraints in a uniform man-
ner, we adopt error functions as a means of expressing con-
straints. An error function e(�) is typically associated with
a single arithmetic constraint, and is defined as a func-
tion from variable value vectors to errors expressed as non-
negative real numbers; that is, e(�) gives the error of the
associated constraint for �. An error function returns a zero
if and only if the constraint is exactly satisfied. For example,
e(�) = (xi − xj)

2 can be used for the constraint xi = xj .
We assume that, for each e(�), its gradient is known:

∇e(�) =

�
∂e(�)

∂x1
,
∂e(�)

∂x2
, . . . ,

∂e(�)

∂xn

�
.

In the same way as constraint hierarchies [7], constraint sys-
tems in our framework can be divided into levels consisting
of constraints with equal strengths. Constraints with the
strongest preference are said to be required (or hard), and
are guaranteed to be always satisfied (if it is impossible,
there will be no solution). By contrast, constraints with
weaker preferences are said to be preferential (or soft), and
may be relaxed if they conflict with stronger constraints.

Solutions to constraint systems are defined as follows: let
ei,j(�) be the error function of the j-th constraint (1 ≤ j ≤
mi) at strength level i (0 ≤ i ≤ l); then solutions � are
determined with the optimization problem

minimize
�

E(�) subject to e0,j(�) = 0 (1 ≤ j ≤ m0)

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



where E is an objective function defined as

E(�) =
l�

i=1

mi�
j=1

wiei,j(�)

in which wi indicates the weight associated with strength i,
and the relation w1 � w2 � · · · � wl holds. In this formu-
lation, level 0 corresponds to required constraints, and the
others to preferential ones. Intuitively, more weighted (or
stronger) preferential constraints should be more satisfied.

Our framework simulates constraint hierarchies. Particu-
larly, if the squares of constraint violations are used to com-
pute error functions, a system in our framework will obtain
approximate solutions to the similar hierarchy solved with
the criterion least-squares-better [3, 17]. The largest differ-
ence is that a system in our framework slightly considers a
weak constraint inconsistent with a stronger satisfiable one
in computing its solutions, while the similar hierarchy would
discard such a weak one.

Our actual implementation of the Chorus3D constraint
solver provides four external strengths required, strong,
medium, and weak as well as two internal strengths very

strong (used to approximately handle required nonlinear
or inequality constraints) and very weak (exploited to make
new solutions as close to previous ones as possible). It typ-
ically assigns weights 324, 323, 322, 321, and 1 to strengths
very strong, strong, medium, weak, and very weak respec-
tively. These weights were determined according to the pre-
cision of the actual numerical algorithm (described in the
next subsection). To know how much these weights affect
solutions, suppose a system of strong constraint x = 0 and
medium one x = 100. Then the unique solution will be ob-
tained as x = 3.0303 · · · (= 100/33). Thus the difference of
strengths is obvious. According to our actual experience,
this precision allows us to discriminate constraint strengths
in most graphical applications.

3.2 Algorithm
To actually find solutions to constraint systems presented
above, we need to solve their corresponding optimization
problems. For this purpose, we designed a constraint sat-
isfaction algorithm by combining a numerical optimization
technique with a genetic algorithm. It uses numerical op-
timization to find local solutions, while it adopts a genetic
algorithm to search for global solutions.

For numerical optimization, we mainly use the quasi-Newton
method based on Broyden-Fletcher-Goldfarb-Sahnno updat-
ing formula [2, 6], which is a fast iterative technique that
exhibits superlinear convergence. Since it excludes fruit-
less searches by utilizing its history, it is usually faster than
straightforward Newton’s method.

We introduced a genetic algorithm to alleviate the problem
that some kinds of geometric constraints suffer from local op-
timal but global non-optimal solutions [11, 16]. Generally,
a genetic algorithm is a stochastic search method that re-
peatedly transforms a population of potential solutions into
another next-generation population [10, 15]. We typically
necessitate it only for computing initial solutions; in other
words, we can usually re-solve modified constraint systems

without the genetic algorithm, only by applying numerical
optimization to previous solutions.

4. PROCESSING COORDINATE
TRANSFORMATIONS

In this section, we propose a method for integrating coordi-
nate transformations with our constraint framework.

As already mentioned, we use world coordinates of points
to evaluate 3D geometric constraints. A naive method for
this is to duplicate point variables in all ancestor coordinate
systems, and then to impose required constraints that rep-
resent coordinate transformations between the point vari-
ables. However, this method requires an optimization rou-
tine supporting required nonlinear constraints, which lim-
its the availability of actual techniques (in fact, we cannot
use the quasi-Newton method for this purpose). Also, this
method tends to yield many variables and constraints, and
therefore requires an extra amount of memory.

Below we propose a more widely applicable method for han-
dling coordinate transformations. Its characteristic is to
hide transformations from optimization routines, which is
realized by embedding transformations in error functions.

4.1 Model
To begin with, we introduce another variable vector �′ =
(x′

1, x
′
2, . . . , x′

n), which is created by replacing variables for
local coordinates of 3D points in � with the corresponding
ones for world coordinates (1D variables remain the same).
We can mathematically model this process as follows: Con-
sider the sequence of the s transformations

�0 (= �)
�0−→ �1

�1−→ · · · �s−2−→ �s−1

�s−1−→ �s (= �
′)

where �0 and �s are equal to � and �′ respectively, each
�k (1 ≤ k ≤ s− 1) is an “intermediate” vector, and each �k
(0 ≤ k ≤ s − 1) is a function that transforms �k into �k+1.
Intuitively, �k corresponds to a coordinate transformation,
and transforms related point variables from its source co-
ordinate system into its destination system. It should be
noted that, although transformations are, in general, hier-
archical (or tree-structured), we can always find such a linear
sequence by “serializing” them in an appropriate order.

By using such transformations, we can compute �′ as fol-
lows:

�
′ = �s−1(�s−2(· · · (�1(�0(�))) · · · )) ≡ �(�)

where � is defined as the composition of all the elemental
transformations. In the following description, we write yk,i

to denote the i-th element of �k, and also tk,i to represent
the i-th element of �k; that is,

�k+1 = (yk+1,1, yk+1,2, . . . , yk+1,n)

= (tk,1(�k), tk,2(�k), . . . , tk,n(�k)) = �k(�k).

4.2 Method
Geometric constraints are evaluated by using world coordi-
nates of points, which means that their error functions are

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



defined as e(�′). Using the composed transformations, we
can evaluate them as

e(�′) = e(�(�)).

Importantly, we can efficiently realize this computation by
applying only necessary transformations to actually used
variables.

We also need to compute the gradient of e(�(�)), i.e.,

∇e(�(�)) =

�
∂e(�(�))

∂x1
,
∂e(�(�))

∂x2
, . . . ,

∂e(�(�))

∂xn

�
.

Basically, we can decompose each partial derivative
∂e(�(�))/∂xi into primitive expressions by repeatedly us-
ing the chain rule. However, we should avoid the simple
application of the chain rule since it would result in a large
number of expressions.

Instead, we perform a controlled way of decomposing such
partial derivatives; it appropriately arranges the chain rule
to restrict the computation to only necessary components.
First, we decompose ∂e(�(�))/∂xi as follows:

∂e(�(�))

∂xi
=
�
j′

∂e(�′)
∂x′

j′

∂ts−1,j′(�s−1)

∂xi

=
�
j′

∂e(�′)
∂x′

j′

�
js−1

∂ts−1,j′(�s−1)

∂ys−1,js−1

∂ts−2,js−1(�s−2)

∂xi

=
�
js−1

��
�
�
j′

∂e(�′)
∂x′

j′

∂ts−1,j′(�s−1)

∂ys−1,js−1

��
	

∂ts−2,js−1(�s−2)

∂xi

=
�
js−1

∂e(�′)
∂ys−1,js−1

∂ts−2,js−1(�s−2)

∂xi
.

Note that each ∂e(�′)/∂x′
j′ is given by the defini-

tion of the geometric constraint, and also that each
∂ts−1,j′(�s−1)/∂ys−1,js−1 is a partial derivative in the gra-
dient of a single coordinate transformation �s−1. Thus we
can obtain each ∂e(�′)/∂ys−1,js−1 . Also, by repeating this
process, we can compute, for each k,

∂e(�(�))

∂xi
=
�
jk

∂e(�′)
∂yk,jk

∂tk−1,jk
(�k−1)

∂xi

and finally achieve

∂e(�(�))

∂xi
=
�
j1

∂e(�′)
∂y1,j1

∂t0,j1(�)

∂xi

where each ∂t0,j1(�)/∂xi is a component of the gradient of
�0. Therefore, ∂e(�(�))/∂xi is now determined.

Furthermore, we can considerably reduce the number of the
computations of ∂e(�′)/∂yk,jk

in practice. We can make the
following observations about the above computation:

• For each variable xj′ , ∂e(�′)/∂x′
j′ can be non-zero only

if xj′ is actually needed to evaluate the designated con-
straint.

• If xi is originated in the coordinate system associated
with �k (that is, xi is either a local coordinate or a

parameter of the coordinate transformation), we have
yk,i = xi, which means that we have ∂tk,j(�k)/∂xi.
Therefore, we can compute ∂e(�′)/∂xi immediately.

These observations reveal that we need to transfer a partial
derivative ∂e(�′)/∂yk,j to the next step only when xj rep-
resents a really necessary coordinate that has not reached
its local coordinate system. Also, since we can handle each
necessary point independently, we can implement this pro-
cess with a linear recursive function that hands over only
three derivatives ∂e(�′)/∂yk,j at each recursive call.

5. IMPLEMENTATION
We implemented the proposed method by developing a con-
straint solver called Chorus3D, which is a 3D extension to
our previous 2D geometric constraint solver Chorus [13]. We
constructed Chorus3D as a C++ class library, and also de-
veloped a native method interface to make it available to
Java programs.

Chorus3D allows programmers to add a new kind of arith-
metic constraints (e.g., Euclidean geometric constraints) by
constructing a new constraint class with a method that eval-
uates their error functions. Also, programmers can intro-
duce a new kind of non-arithmetic (or pseudo) constraints
(for, e.g., general graph layout) by developing a new evalua-
tion module which computes an “aggregate” error function
for a given set of constraints.

Chorus3D currently provides linear equality, linear inequal-
ity, edit (update a variable value), stay (fix a variable value),
Euclidean geometric constraints (for, e.g., parallelism, per-
pendicularity, and distance equality), and graph layout con-
straints based on the spring model [14]. Linear equality/
inequality constraints can refer to only 1D variables (includ-
ing elements of 3D point variables), while edit and stay con-
straints can be associated with 1D and 3D point variables.
Euclidean geometric constraints typically refer to point vari-
ables although they sometimes require 1D variables for an-
gles and distances. Each graph layout constraint represents
a graph edge, and refers to two point variables as its asso-
ciated graph nodes. As stated earlier, constraints on such
point variables are evaluated by using world coordinates of
the points. Also, a single constraint can refer to point vari-
ables belonging to different coordinate systems.

The application programming interface of Chorus3D is a
natural extension to that of Chorus, which provides a certain
compatibility with a recent linear solver called Cassowary
[3]; in a similar way to Cassowary and Chorus, Chorus3D
allows programmers to process constraint systems by cre-
ating variables and constraints as objects, and by adding/
removing constraint objects to/from the solver object. In
addition, Chorus3D handles coordinate transformations as
objects, and presents an interface for arranging them hier-
archically.

6. EXAMPLES
In this section, we present three examples to demonstrate
how to incorporate geometric constraints into 3D graphics
by using the Chorus3D constraint solver. All the examples
are implemented in Java by using Java 3D as a graphics

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



Figure 1: A 3D geometric layout of a general graph
structure.

programming interface as well as the native method interface
with Chorus3D. We also provide computation times taken
for constraint satisfaction in these examples.

6.1 Graph Layout
The first example is an application which lays out a set
of points with a general graph structure in a 3D space as
shown in Figure 1. This application also allows a user to
drag graph nodes with a mouse.1 The used graph layout
technique is based on a 3D extension to the spring model
[14]. This kind of 3D graph layout is practically useful to
information visualization, and has actually been adopted in
a certain system [19].

The constraint system of this graph layout consists of 26
point variables (i.e., 78 real-valued variables), 31 graph lay-
out constraints, and three linear equality constraints for fix-
ing one of the point variables at the origin. When executed
on an 866 MHz Pentium III processor running Linux 2.2.16,
Chorus3D obtained an initial solution in 456 milliseconds. It
performed constraint satisfaction typically within 250 mil-
liseconds to reflect the user’s dragging a graph node.

6.2 Constrained Dragging
The second example is an application which allows a user
to drag an object constrained to be on another spherical
object. Figure 2 depicts this application, where the smaller
solid spherical object is constrained to be on the surface of
the larger wireframe one. The application declares a strong

Euclidean geometric constraint which specifies a constant
distance between the centers of these objects. When the
user tries to drag the smaller object with a mouse, the appli-
cation imposes another medium Euclidean constraint which
collinearly locates the viewpoint, the 3D position of the
mouse cursor (which is considered to be on the screen), and

1Unlike constrained dragging in the next example, this
mouse operation is simply implemented with Java 3D’s
PickMouseBehavior classes.

Figure 2: Dragging an object constrained to be on
a sphere.

Viewpoint
Mouse cursor which
is on the screen

Screen

Object which is on
the sphere surface

Collinearity
constraint

Distance
constraint

Sphere

Figure 3: Implementation of constrained dragging.

the center of the dragged object as shown in Figure 3. This
collinearity constraint reflects the motion of the mouse in
the position of the dragged object. Since the collinearity
constraint is weaker than the first Euclidean constraint, the
user cannot drag the smaller object to the outside of the
larger sphere.

The application initially declares one Euclidean geometric
constraint on two point variables, and solved it in 1 mil-
lisecond on the same computer as the first example. When
the user tries to drag the smaller object, it adds another
Euclidean constraint as well as two edit constraints for the
viewpoint and mouse position. The solver maintained this
constraint system usually within 2 milliseconds.

6.3 Inverse Kinematics
The final example applies inverse kinematics to a virtual
robot arm by using constraints. Unlike the previous ex-
amples, it takes advantage of coordinate transformations to
express its constraint system.

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



(a) (b) (c)

(d) (e) (f)

Figure 4: A robot arm application which performs inverse kinematics.

As illustrated in Figure 4(a), the robot arm consists of four
parts called a base, a shoulder, an upper arm, and a forearm.
Constraint satisfaction for inverse kinematics is performed
to position its hand (the end of the forearm) at the target
object if possible, or otherwise to make it maximally close
to the target. Figures 4(b)–(f) show the movement of the
robot arm. In Figures 4(b)–(e), its hand is positioned at
the exact location of the target by using appropriate angles
of its joints. By contrast, in Figure 4(f), the hand cannot
reach the target, and therefore the arm is extended toward
the target instead.

Figure 5 describes the constraint program used in the robot
arm application. After constructing a constraint solver
s, it creates six coordinate transformations shldrTTfm,
shldrRTfm, uarmTTfm, uarmRTfm, farmTTfm, and farmRTfm.
Here the rotation angle parameters of the rotation trans-
formations shldrRTfm, uarmRTfm, and farmRTfm will actu-
ally work as variables that can be altered by the solver.
Next, it generates a point variable handPos to represent
the position of the hand, and then suggests the target po-
sition to the hand by using a preferential edit constraint
editHandPos. Finally, executing the solver, it obtains the
desired angles shldrAngle, uarmAngle, and farmAngle of

the rotation transformations. These angles will be passed
to the Java 3D library to render the properly configured
robot arm.

This program generates a constraint system which contains
three translation and three rotation transformations, one ex-
plicit point variable as well as six point variables and three
1D variables for coordinate transformations, and one edit
constraint. The solver found an initial solution to this sys-
tem in 18 milliseconds, and obtained each new solution for
a frame update typically within 10 milliseconds.

7. RELATEDWORK AND DISCUSSION
There has been work on integrating constraints or similar
functions with 3D graphics languages to facilitate the spec-
ification of graphical objects. For example, we can view the
event routing mechanism in VRML [4] as a limited form of
one-way propagation constraints. Also, there is an attempt
to extend VRML by introducing one-way propagation and
finite-domain combinatorial constraints [5]. However, they
cannot handle more powerful simultaneous nonlinear con-
straints such as Euclidean geometric constraints.

Although many constraint solvers have been developed in

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



// constraint solver
s = new C3Solver();
// translation transformation for the shoulder: fixed to (0, .1, 0)
shldrTTfm = new C3TranslateTransform(new C3Domain3D(0, .1, 0));
s.add(shldrTTfm); // shldrTTfm is parented by the world coordinate system
// rotation transformation for the shoulder: axis fixed to (0, 1, 0); angle ranging over [−10000, 10000]
shldrRTfm = new C3RotateTransform(new C3Domain3D(0, 1, 0), new C3Domain(-10000, 10000));
s.add(shldrRTfm, shldrTTfm); // shldrRTfm is parented by shldrTTfm
// translation transformation for the upper arm: fixed to (0, .1, 0)
uarmTTfm = new C3TranslateTransform(new C3Domain3D(0, .1, 0));
s.add(uarmTTfm, shldrRTfm); // uarmTTfm is parented by shldrRTfm
// rotation transformation for the upper arm: axis fixed to (0, 0, 1); angle ranging over [−1.57, 1.57]
uarmRTfm = new C3RotateTransform(new C3Domain3D(0, 0, 1), new C3Domain(-1.57, 1.57));
s.add(uarmRTfm, uarmTTfm); // uarmRTfm is parented by uarmTTfm
// translation transformation for the forearm: fixed to (0, .5, 0)
farmTTfm = new C3TranslateTransform(new C3Domain3D(0, .5, 0));
s.add(farmTTfm, uarmRTfm); // farmTTfm is parented by uarmRTfm
// rotation transformation for the forearm: axis fixed to (0, 0, 1); angle ranging over [−3.14, 0]
farmRTfm = new C3RotateTransform(new C3Domain3D(0, 0, 1), new C3Domain(-3.14, 0));
s.add(farmRTfm, farmTTfm); // farmRTfm is parented by farmTTfm
// variable for the hand’s position, associated with farmRTfm and fixed to (0, .5, 0)
handPos = new C3Variable3D(farmRTfm, new C3Domain3D(0, .5, 0));
// medium-strength edit constraint for the hand’s position
editHandPos = new C3EditConstraint(handPos, C3.MEDIUM);
s.add(editHandPos);
// suggest the hand being located at the target’s position
editHandPos.set(getTargetWorldCoordinates());
// solve the constraint system
s.solve();
// get solutions
double shldrAngle = shldrRTfm.rotationAngle().value();
double uarmAngle = uarmRTfm.rotationAngle().value();
double farmAngle = farmRTfm.rotationAngle().value();

Figure 5: Constraint program for the robot arm application.

the field of graphical user interfaces [3, 7, 11, 12, 13, 17, 18],
most of them do not provide special treatment for 3D graph-
ics. In general, the role of nonlinear geometric constraints
is more important in 3D applications than in 2D interfaces.
Most importantly, 3D graphics usually requires rotations of
objects which are rarely used in 2D interfaces. The main
reason is that we often equally treat all “horizontal” direc-
tions in a 3D space even if we may clearly distinguish them
from “vertical” directions. Therefore, nonlinear constraint
solvers are appropriate for 3D applications. In addition, co-
ordinate transformations should be supported since they are
typically used to handle rotations of objects.

Gleicher proposed the differential approach [8, 9], which sup-
ports 3D geometric constraints and coordinate transforma-
tions. In a sense, it shares a motivation with Chorus3D; in
addition to support for 3D graphics, it allows user-defined
kinds of geometric constraints. However, it is based on a dif-
ferent solution method from Chorus3D; it realizes constraint
satisfaction by running virtual dynamic simulations. This
difference results in a quite different behavior of solutions as
well as an interface for controlling solutions. By contrast,
Chorus3D provides a much more compatible interface with
recent successful solvers such as Cassowary [3].

Much research on inverse kinematics has been conducted in
the fields of computer graphics and robotics [1, 20]. How-
ever, inverse kinematics is typically implemented as special-
ized software which only provides limited kinds of geometric

constraints.

Chorus3D has two limitations in its algorithm: one is on the
precision of solutions determined by preferential constraints;
the other is on the speed of the satisfaction of large con-
straint systems. These limitations are mainly caused by the
treatment of multi-level preferences of constraints in addi-
tion to required constraints (i.e., constraint hierarchies). Al-
though many numerical optimization techniques have been
proposed and implemented in the field of mathematical pro-
gramming [2, 6], most of them do not handle preferential
constraints. To alleviate the limitations of Chorus3D, we
are pursuing a more sophisticated method for processing
multi-level preferential constraints.

We implemented Chorus3D as a class library which can
be exploited in C++ and Java programs. However, more
high-level authoring tools will also be useful for declarative
approaches to 3D design. One possible direction is to ex-
tend VRML [4] to support geometric constraints. Standard
VRML requires scripts in Java or JavaScript to realize com-
plex layouts and behaviors. By contrast, constraint-enabled
VRML will cover a wider range of applications without such
additional scripts.

8. CONCLUSIONS AND FUTUREWORK
In this paper, we presented Chorus3D, a geometric con-
straint library for 3D graphical applications. It enables pro-
grammers to use geometric constraints for various purposes

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 



such as geometric layout, constrained dragging, and inverse
kinematics. Its novel feature is to handle scene graphs
by processing coordinate transformations in geometric con-
straint satisfaction.

Our future work includes the development of other kinds of
geometric constraints to further prove the usefulness of our
approach. In particular, we are planning to implement non-
overlapping constraints [13] in Chorus3D so that we can use
it for the collision resolution of graphical objects. Another
future direction is to improve Chorus3D in the scalability
and accuracy of constraint satisfaction.

9. REFERENCES
[1] Badler, N. I., Phillips, C. B., and Webber, B. L.

Simulating Humans: Computer Graphics, Animation,
and Control. Oxford University Press, Oxford, 1993.

[2] Bertsekas, D. P. Nonlinear Programming, 2nd ed.
Athena Scientific, 1999.

[3] Borning, A., Marriott, K., Stuckey, P., and Xiao, Y.
Solving linear arithmetic constraints for user interface
applications. In Proc. ACM UIST , 1997, 87–96.

[4] Carey, R., Bell, G., and Marrin, C. The Virtual
Reality Modeling Language (VRML97). ISO/IEC
14772-1:1997, The VRML Consortium Inc., 1997.

[5] Diehl, S., and Keller, J. VRML with constraints. In
Proc. Web3D-VRML, ACM, 2000, 81–86.

[6] Fletcher, R. Practical Methods of Optimization,
2nd ed. John Wiley & Sons, 1987.

[7] Freeman-Benson, B. N., Maloney, J., and Borning, A.
An incremental constraint solver. Commun. ACM 33,
1 (1990), 54–63.

[8] Gleicher, M. A graphical toolkit based on differential
constraints. In Proc. ACM UIST , 1993, 109–120.

[9] Gleicher, M. A differential approach to graphical
manipulation (Ph.D. thesis). Tech. Rep.
CMU-CS-94-217, Sch. Comput. Sci. Carnegie Mellon
Univ., 1994.

[10] Herrera, F., Lozano, M., and Verdegay, J. L. Tackling
real-coded genetic algorithms: Operators and tools for
behavioural analysis. Artif. Intell. Rev. 12, 4 (1998),
265–319.

[11] Heydon, A., and Nelson, G. The Juno-2
constraint-based drawing editor. Research Report
131a, Digital Systems Research Center, 1994.

[12] Hosobe, H. A scalable linear constraint solver for user
interface construction. In Principles and Practice of
Constraint Programming—CP2000 , vol. 1894 of
LNCS, Springer, 2000, 218–232.

[13] Hosobe, H. A modular geometric constraint solver for
user interface applications. In Proc. ACM UIST , 2001,
91–100.

[14] Kamada, T., and Kawai, S. An algorithm for drawing
general undirected graphs. Inf. Process. Lett. 31, 1
(1989), 7–15.

[15] Kitano, H., Ed. Genetic Algorithms. Sangyo-Tosho,
1993. In Japanese.

[16] Kramer, G. A. A geometric constraint engine. Artif.
Intell. 58, 1–3 (1992), 327–360.

[17] Marriott, K., Chok, S. S., and Finlay, A. A tableau
based constraint solving toolkit for interactive
graphical applications. In Principles and Practice of
Constraint Programming—CP98 , vol. 1520 of LNCS,
Springer, 1998, 340–354.

[18] Sannella, M. Skyblue: A multi-way local propagation
constraint solver for user interface construction. In
Proc. ACM UIST , 1994, 137–146.

[19] Takahashi, S. Visualizing constraints in visualization
rules. In Proc. CP2000 Workshop on Analysis and
Visualization of Constraint Programs and Solvers,
2000.

[20] Zhao, J., and Badler, N. I. Inverse kinematics
positioning using nonlinear programming for highly
articulated figures. ACM Trans. Gr. 13, 4 (1994),
313–336.

© ACM 2002. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record 
was published in Proc. Smart Graphics 2002, http://dx.doi.org/10.1145/569005.569019. 

 


