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ABSTRACT

Graph layout is an information visualization technology for
illustrating relations between objects. Interactive graph
layout is often important since it is difficult to statically
lay out complex graphs such as general undirected graphs.
In this paper, we propose a novel approach to interac-
tive layout of general undirected graphs. The basic idea
of our approach is to use static graph layouts in high-
dimensional spaces to dynamically find two-dimensional lay-
outs according to user interaction. The resulting method
that we present exhibits the following two characteristics:
(1) it efficiently updates two-dimensional graph layouts
during user interaction; (2) it follows users’ node drag-
ging operations by actively moving other closely related
nodes. Our method adopts eigenvector-based multidimen-
sional scaling to compute high-dimensional graph layouts,
and performs constraint satisfaction to determine appropri-
ate two-dimensional planes onto which the high-dimensional
layouts will be projected.
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1. INTRODUCTION

Information visualization is often needed to illustrate rela-
tions between objects. Graphs are formal means for express-
ing such relations; they represent objects as nodes and such
relations as edges. To visualize information expressed as
graphs, researchers have studied graph layout or graph draw-
ing technology [1], which automatically computes appropri-
ate positions of nodes and edges. Graph layout methods are
designed according to classes of graphs that are determined
by their structures. Examples of classes are trees, directed
graphs, planar graphs, and general undirected graphs.

General undirected graphs, whose edges have no direc-
tions, are used to express various information with network
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structures. To lay out them, the force-directed approach [1],
which regards graphs as dynamic systems and finds their
stable layouts by running simulations, is often adapted, and
has been extensively studied. General undirected graph
layout methods including the force-directed approach have
been successful to a certain degree; they obtain aesthetic
layouts of small graphs with tens of nodes and also of mesh-
structured graphs with millions of nodes.

Nevertheless, layout of general undirected graphs of cer-
tain size and complexity is still a hard problem. Visualizing
the structure of such a graph with a single static layout is
considered to be difficult because of its high generality.

An effective means for this problem is interactive graph
layout (also known as dynamic graph layout), which allows
users to visualize graphs interactively. The force-directed
approach is easily extensible to interactive graph layout by
enabling users to affect dynamic simulations, and therefore
has been used for this purpose [11].

In this paper, we propose a novel approach to interac-
tive layout of general undirected graphs, which is different
from the force-directed one. The basic idea of our approach
is to statically compute graph layouts in high-dimensional
spaces beforehand, and then to dynamically determine two-
dimensional layouts according to users’ node dragging oper-
ations as well as to the high-dimensional layouts.

The resulting method that we present exhibits the follow-
ing two characteristics.

1. It efficiently computes two-dimensional graph layouts,
and processes graphs with more than one thousand
nodes within a few tens of milliseconds. Therefore, it
handles user interaction in real time.

2. It follows users’ node dragging operations by actively
moving other closely related nodes. This property is
applicable, for example, to emphasize a part of a graph
by dragging only a few nodes of it.

Our method computes internal high-dimensional graph
layouts by adopting a graph layout method [9] based on mul-
tidimensional scaling [12] using eigenvector calculation and
by extending it to high dimensions. Also, it transforms such
high-dimensional layouts into two-dimensional ones by pro-
jecting them onto appropriate two-dimensional planes that
we determine by constraint satisfaction.

The rest of this paper is organized as follows. Section 2 de-
scribes related work on graph layout. Section 3 explains an
existing graph layout method on which our research is based.
Section 4 proposes our interactive graph layout method, and
Section 5 evaluates it by presenting experimental results.
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Section 6 discusses our method. Finally, Section 7 mentions
the conclusions and future work of this research.

2. RELATED WORK

The force-directed approach [1] is often adopted to find
layouts of general undirected graphs. Eades proposed a
method, known as the spring embedder, that finds a stable
layout of nodes by using attractive and repulsive forces of
springs assigned to edges [2]. Kamada and Kawai presented
a method that uses springs to make the Euclidean distances
between any pairs of nodes close to the graph-theoretic dis-
tances [7]. In [4], a method is provided that first finds graph
layouts in multidimensional (e.g., four-dimensional) spaces
by using the force-directed approach and then projects the
layouts onto two- or three-dimensional spaces. An exam-
ple of applying the force-directed approach to interactive
information visualization is DocSpace [11], which visualizes
relations between documents such as scientific papers.

Multidimensional scaling (MDS) [12] is sometimes used
for information visualization including graph layout. MDS
is a statistical method that finds multidimensional layouts of
objects whose similarities are given as input data. Kruskal
and Seery proposed adopting MDS for graph layout, and
gave an actual method that uses MDS based on eigenvec-
tor calculation [9] (which Section 3 describes in detail). An
example that uses MDS for information visualization is Sem-
Net [3], which visualizes large knowledge bases by adopting
graph layouts in three dimensional spaces.

Methods using eigenvectors for graph layout are attract-
ing attention. In [10], an example is presented that finds
a graph layout in the football shape by adopting eigenvec-
tors of Laplacian matrices. The ACE algorithm [8], which is
based on a similar formulation, computes layouts of graphs
with more than 10° nodes within a minute by using an
algebraic multigrid algorithm to speed up eigenvector cal-
culation. In [5], a method is given that finds layouts of
graphs with 10° nodes within a few seconds by first com-
puting graph layouts of relatively high dimensions such as
50 and then by projecting them onto two-dimensional planes
according to principal component analysis using eigenvector
calculation. It should be noted, however, that these results
were obtained by applying the methods to special graphs
with mesh structures.

Fisheyeing is known as an effective means for visualizing
complex information. It enables users to expand and em-
phasize details of visualized information and, at the same
time, to display its whole structure by simplifying the other
part. It has also been applied to graph visualization [3, 6].

3. MULTIDIMENSIONAL
GRAPH LAYOUT

This section explains an existing multidimensional graph
layout method that we use in this research.

3.1 Torgerson’s Method

As the basis of multidimensional graph layout, we describe
Torgerson’s method [9, 12], also known as metric multidi-
mensional scaling and as principal coordinate analysis in
the field of statistics. Given distances between any pairs of
objects, it finds a layout of them that satisfies the distances.

Assume that we have distances d;; between any pairs ¢
and j of n objects, and also that they satisfy the distance

axioms. First, define a;; as follows:
a = & lzdz +lzd2, _ Lzzdz 2
1] 2 n - ik n - kj n2 - l kl ij | -

Next, define an n x n real symmetric matrix A = (as;).
Then A is diagonalizable as XTAX = A for an orthogo-
nal matrix X, where, with the eigenvalues Ax of A and the
eigenvectors @, corresponding to Ag, A is the diagonal ma-
trix with Ay as its (k, k) elements, and X = (z1, x2,...,Zx).

Now, let P = XAY?, where A'/? is the diagonal matrix
with /Ay as its (k, k) elements. Then, for an ideal set of
d;j, each eigenvalue A\, is nonnegative, and each i-th row
(pi1, pi2, - - -, Pin) of P can be regarded as the coordinates of
the location of the object ¢ in the n-dimensional real Eu-
clidean space. It should be noted that actual data usually
result in occurrences of negative eigenvalues.

Ordinary applications use only the coordinates corre-
sponding to a small number of the largest eigenvalues. For
example, the first and second largest eigenvalues A\; and A2
obtain a two-dimensional layout with the i-th objects lo-
cated at (pi1, pi2).

3.2 Graph Layout Using Torgerson’s Method

Kruskal and Seery proposed a method that uses Torger-
son’s method to lay out connected general undirected graphs
[9] (the TKS method). It is realized as follows.

1. Given a graph, first compute the graph-theoretic dis-
tances (the lengths of the shortest paths) between any
pairs of its nodes.

2. Next, perform Torgerson’s method by using the graph-
theoretic distances, to obtain a layout of the nodes on
a two-dimensional plane.

Although they assumed two dimensions, the method is easily
extensible to multidimensional graph layouts.

3.3 Relation to and Comparison with
Kamada and Kawai’s Method

The TKS method has close relation to Kamada and
Kawai’s method [7] (the KK method) described in Section 2;
both of them attempt to find layouts of nodes in such a way
that the Euclidean distances between the nodes should be
the graph-theoretic ones. The principal difference is that
the former adopts spaces of necessary dimensions whereas
the latter uses only two-dimensional planes.

The TKS method is considered to obtain general outlines
of graphs on two-dimensional planes. More local details of
the graphs are represented in the higher dimensions, and
therefore are invisible from the two-dimensional layouts.

By contrast, the KK method well represents local details
of graphs in two-dimensional layouts. However, it sometimes
breaks their general outlines, giving near locations to nodes
that are distant in the graph-theoretic sense. The causes are
considered that it weakens springs between nodes separated
by long graph-theoretic distances, and also that it often finds
local optimal solutions in computing the layouts.

For a comparison between the TKS and KK methods,
Figure 1 presents examples of two-dimensional layouts ob-
tained by applying these methods to the same graph. The
graph treated here is the AT&T graph! ug 263, a general
undirected graph with 141 nodes and 177 edges.

Yftp://ftp.research.att.com/dist/drawdag/ug. gz
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Figure 1: Layouts of the AT&T graph ug 263 (with
141 nodes and 177 edges) obtained by the (a) TKS
and (b) KK methods.

4. OUR METHOD

This section proposes a high-dimensional approach to in-
teractive visualization of graphs on two-dimensional planes.

4.1 Computing Two-Dimensional Layouts

Our new method computes two-dimensional graph layouts
by projecting graph layouts in high-dimensional spaces onto
two-dimensional planes. It handles connected general undi-
rected graphs, and represents edges as straight lines con-
necting nodes.

Adopting the TKS method described in the previous
section, our method computes graph layouts in high-
dimensional spaces. Characteristically, it uses all the coordi-
nates corresponding to positive eigenvalues. Generally, since
the TKS method exploits graph-theoretic distances in Torg-
erson’s method, it obtains many positive eigenvalues, which
means that the dimensionalities of the resulting graph lay-
outs are high. In the following, we assume that the eigenval-
ues A1, A2, ... are sorted in descending order, and also d > 2,
where d is the number of positive eigenvalues. Then we have
A1 > A2 > - > Mg > 0, and the position of each node ¢ in
the high-dimensional space is p; = (pi1, pi2, - - -, Did)-

We project such a d-dimensional graph layout onto a two-
dimensional plane (that we call the projection plane) as fol-
lows. Consider the projection plane as the plane spanned by
two d-dimensional vectors e; and e». Using these vectors,
we can obtain the two-dimensional coordinates of node 7 as
(p; - e1,p; - e2).

To initialize e; and ez for the initial two-dimensional
layout, we let e1 = f,/|f,] and e2 = f,/|f5], with
f1 and f, which are the d-dimensional vectors defined as
1= (A7,0,A5,0,...) and f, = (0,A5,0,A%,...), where o
is a parameter to adjust how the coordinates affect the two-
dimensional layout. Note that e; and ey are orthogonal.

In general, the above definition follows that, with a larger
parameter «, high-dimensional coordinates less affect the
initial two-dimensional graph layout. Especially, when A1 >
Az and A2 > A4, the limit of the initial layout as o — oo is
the two-dimensional layout obtained by the TKS method.
We use a = 1/2 by default since computing appropriate «
is generally difficult.

4.2 Updating Two-Dimensional Layouts

Next, we present a method that enables users to inter-
actively update two-dimensional graph layouts. It is real-
ized by moving projection planes. Since it is not neces-

Figure 2: Updating the projection plane.

sary to modify graph layouts in high-dimensional spaces, our
method provides high efficiency in updating two-dimensional
layouts. It allows a user to drag a single node at a time.
The basic idea of our method is that it rotates the pro-
jection plane in the three-dimensional space spanned by the
current vectors for the projection plane and the vector posi-
tioning the dragged node. To compute this, it performs con-
straint satisfaction by imposing the constrains that should
be satisfied by the vectors spanning the projection plane.
We describe it in detail below. First, we define constants
that work as input. Let e; and ez be the current vectors
spanning the projection plane. Let p be the position of
the dragged node in the d-dimensional space, and (z,y) and
(z',y') be its current and new two-dimensional coordinates
respectively. Then we have (z,y) = (p-e1,p - e2) by defini-
tion. Also, we assume ||(z,y)|| < ||| and [i(a’,5/)] < [Ip]
Next, let €] and e be the new vectors spanning the pro-
jection plane. We consider these vectors to be in the three-
dimensional space spanned by e, ez, and p. Then they can
be expressed with six variables a1, b1, c1, a2, b2, and ca as
e} = aie; +biex+cip and eb = aze; +baea+cap. Also, let
7 be the vector indicating the rotation axis of the projection
plane. Then it can be represented with two variables s and
tas r = sei + tes.
Now, using these constants and variables, we impose the
following eight constraints:

leill =1, leall =1, el ey =0,
”T”:l? 6,1'1":61'7', €l2'7‘262~7‘7
p-ei=12, p-ey=y.

The first three constraints mean that e} and e} are unit
vectors and orthogonal. The next three constraints indicate
that r is a unit vector, and that e} and e are the rotations
of e; and e around r. The last two constraints imply that
(z',y') is the coordinates obtained by projecting p onto the
new projection plane. These vectors are depicted in Figure 2
in the three-dimensional manner.

We can solve these eight constraints easily. We have only
eight variables a1, b1, c1, a2, b2, c2, s, and ¢, and only equal-
ity constraints, the first six of which are quadratic, and the
last two of which are linear. Therefore, we can efficiently
solve them by a basic numerical method for simultaneous
nonlinear equations such as Newton’s method.

In the above, we assumed two conditions ||(z,v)|| < ||p||

© ACM 2004. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record

was published in Proc. SAC2004, http://dx.doi.org/10.1145/967900.968155.



(a) (b)

Figure 3: Interactive layout of the graph with the
four-dimensional hypercubic structure.

and ||(z’,y")|| < |lp||- The condition ||(z,y)| < ||p|| is used
to guarantee that p is linearly independent of e; and es,
and is needed to enable the projection plane to rotate in the
three-dimensional manner. This condition does not hold if
and only if ||(z,y)|| = ||p||- Since it rarely occurs, we can
guarantee the condition by prohibiting the dragging of such
anode. The other condition ||(z’,y')|| < ||p|| is used to make
certain of the existence of the new projection plane, and also
to allow dragging the same node repeatedly. To guarantee
this condition, we only need to introduce a predetermined
small positive constant 7 (e.g., 7 = 107%), and then to re-
place (a/,y/) with {(1 —7)|[p|l/ (', ") |}(z', ') in the case
that [|(2/,y)[| > (1 = 7)[p]| holds.

5. EXPERIMENTAL EVALUATION

To evaluate the interactive graph layout method proposed
in the previous section, we implemented a prototype pro-
gram in C++4, and performed experiments. It adopts AT-
LAS 3.4.1 and LAPACK 3.0 for linear computation includ-
ing eigenvector calculation, uses single precision for floating
point arithmetic, and exploits SIMD instructions (SSE) in-
side ATLAS. Also, it employs Floyd’s algorithm to obtain
graph-theoretic distances. We compiled the program by us-
ing GCC 2.95.3 with the —O3 option, and executed it on a
1.13 GHz Pentium ITI-M processor running Linux 2.2.25.

Below we provide three examples of executing our method.
In these examples, we use o = 1/2 as the parameter to
obtain the initial two-dimensional graph layouts, which we
mentioned in the previous section.

The first example is to lay out the graph whose structure
is analogous to the four-dimensional hypercube. The graph
has 16 nodes and 32 edges. The initial graph layout gen-
erated by our method is shown in Figure 3(a). Next, the
layout obtained by dragging a node is given in Figure 3(b).
By updating the layout as illustrated in Figure 3(b), it is
facilitated to view the structure of the graph as the one that
connects four rectangles by the corresponding vertices, or as
the one that connects two three-dimensional boxes similarly.
The times needed to compute the initial and updated graph
layouts were both less than 10 milliseconds.

The next example is to lay out the AT&T graph ug-263,
which we also used in Section 3. Its initial layout is pre-
sented in Figure 4(a). The internal dimensionality of the
graph (i.e., d in the previous section) is 125. This two-
dimensional graph layout exposes local details of the graph
that the TKS method hides in high-dimensional coordinates,

Figure 4: Interactive layout of the AT&T graph
ug-263 (with 141 nodes and 177 edges).

as suggested by the comparison with the layout in Fig-
ure 1(a). The following figures show interactive layout of
the graph by dragging a single node. Figure 4(b) illustrates
the middle of dragging the node, and Figure 4(c) gives the
layout right after the dragging, which was then scaled to the
screen as depicted in Figure 4(d). This example shows that
our method updated the two-dimensional layout by actively
moving nodes related closely to the dragged one. The times
required for these operations are presented in Table 1.

The final example is the layout of the AT&T graph ug_380,
which consists of 1,104 nodes and 3,231 edges. Figure 5(a)
shows the initial layout of the graph, whose internal dimen-
sionality is 697. Figure 5(b) gives a graph layout obtained
by dragging a single node on the lower right side and then by
scaling the resulting layout to the screen. Also, Figures 5(c)
and (d) illustrate layouts after dragging other two nodes one
by one. This example indicates the use of our method to ex-
pand and emphasize a part of a graph. The times needed for
these processes are provided in Table 1. The result shows
that our method efficiently performed updating the layout
of the graph even in the case that much time was needed to
compute the initial layout of the graph.

6. DISCUSSION

In our method, high dimensionalities of internal graph lay-
outs are important for facilitating interactive graph visual-
ization. This is because, in general, higher dimensionalities
result in greater freedom to locate nodes on two-dimensional
planes. It may be understood by the fact that, if the internal
dimensionality is equal to the number of nodes and the vec-
tors indicating the node positions are linearly independent
of each other, we can obtain any two-dimensional layouts by
determining appropriate projection planes.

It is possible to obtain high-dimensional graph layouts by
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Table 1: Running times of our interactive graph layout method.

Graphs Numbers Numbers Internal dimen- Times for initial layouts (for graph-

Times for updating

of nodes  of edges sionalities theoretic distances and eigenvectors) layouts
ug-263 141 177 125 50 ms (20 ms, 30 ms) < 10 ms
ug-380 1,104 3,231 697 29.7s (8.6, 21.0s) < 20 ms

Figure 5: Interactive layout of the AT&T graph
ug-380 (with 1,104 nodes and 3,231 edges).

other methods than the TKS. However, the TKS method is
currently the only method that we know to fit our approach.
In other words, when another high-dimensional method is
used, it will be possible that transforming two-dimensional
layouts by moving projection planes will not work appro-
priately.? Nevertheless, since speeding up the computation
of high-dimensional graph layouts and also improving the
quality of initial two-dimensional layouts are needed to fur-
ther improve the usefulness of our approach, it is important
to pursue other high-dimensional graph layout methods that
work well for our approach.

Although we handled general undirected graphs in this
research, our method can be accommodated to other kinds
of data that are applicable to Torgerson’s method; it can
handle data that express similarities of objects. It should be
noted, however, that Torgerson’s method assumes similarity
data with an analogous nature to that of Euclidean distances
(graph-theoretic distances are considered to conform to this
assumption). Also, it should be remembered that edges play
an important role in visualizing relations between nodes in
graph layouts. Therefore, even when we handle other kinds
of data, we will need to display some alternative to edges
that represents close similarities between objects.

2We found that the method using eigenvectors of Laplacian
matrices, presented in Section 2, does not work well for our
high-dimensional approach even if we apply a similar idea
to it.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a high-dimensional approach to
interactive layout of general undirected graphs. The result-
ing method efficiently updates two-dimensional graph lay-
outs, and also transforms them appropriately according to
user interaction.

A future direction of this research is to speed up comput-
ing high-dimensional graph layouts. To do it, we examine
if existing methods other than the TKS are appropriate to
generating high-dimensional layouts for our purpose. Our
plan also includes extending our prototype program by en-
hancing its display and user interaction functions.
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