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ABSTRACT
Constraint programming is a method of problem solving
that allows declarative specification of relations among ob-
jects. It is important to allow preferences of constraints since
it is often difficult for programmers to specify all constraints
without conflicts. In this paper, we propose a numerical
method for solving nonlinear constraints with hierarchical
preferences (i.e., constraint hierarchies) in a least-squares
manner. This method finds sufficiently precise local opti-
mal solutions by appropriately processing hierarchical pref-
erences of constraints. To evaluate the effectiveness of our
method, we present experimental results obtained with a
prototype constraint solver.

Keywords
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1. INTRODUCTION
Constraint programming, a method of problem solving

that allows declarative specification of relations among ob-
jects, has been studied in various fields such as artificial in-
telligence, logic programming, and user interfaces. A use of
constraint programming is geometric object layout in user
interface applications such as drawing editors, since it is
natural to use constraints to represent geometric relations
among graphical objects.

It is important to allow preferences of constraints in con-
straint programming especially for user interface applica-
tions. This is because it is difficult for programmers to spec-
ify all constraints without conflicts. Typically, they need to
provide graphical objects not only with constraints on their
geometric layout, but also with other various constraints, for
example, on their possible positional ranges, on their default
locations, and on their movements by mouse dragging.

To handle preferences of constraints, the theoretical
framework known as constraint hierarchies [5] has been
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widely used. In a constraint hierarchy, each constraint is as-
signed a multi-level hierarchical preference called a strength,
which is often symbolically expressed as required, strong,
medium, or weak, and solutions are determined in such a way
that they satisfy as many strong constraints as possible. For
example, the hierarchy of the constraints strong x = 0 and
weak x = 100 yields the solution x = 0.

Recent progress of methods for constraint hierarchies has
enabled use of nonlinear constraints such as Euclidean geo-
metric constraints, nonoverlap constraints, and graph layout
constraints [13, 14]. The power of such nonlinear geometric
constraints is expected to further enhance the possibility of
constraint-based user interface applications.

To our knowledge, however, the current nonlinear solvers
only approximately satisfy constraint hierarchies. For ex-
ample, the nonlinear geometric constraint solver Chorus [13]
finds layouts of objects that slightly differ from correct ones,
usually by several pixels on computer screens. In fact, solv-
ing the hierarchy of strong x = 0 and medium x = 100, it
obtains x = 3.0303 · · · in a typical setting. The difficulty
lies in the treatment of multi-level strengths in constraint
hierarchies.

In this paper, we propose a new method for numerically
solving hierarchies of nonlinear constraints in a least-squares
manner. Our method is based on weighted least squares
[10, 11], and computes sufficiently precise local optimal so-
lutions by adopting a novel technique that we call the hi-
erarchical QR decomposition and by combining it with the
Gauss-Newton method. To evaluate the effectiveness of our
method, we present experimental results obtained with a
prototype constraint solver.

In this research, we restrict our attention to geometric
object layout in user interface applications. However, our
method is applicable to other kinds of applications that can
be regarded as finding a solution to a hierarchy of nonlinear
constraints.

The rest of this paper is organized as follows. Section 2 de-
scribes related work on constraint satisfaction. Section 3 ex-
plains weighted least squares on which our research is based.
Section 4 proposes our method for handling hierarchies of
nonlinear constraints, and Section 5 evaluates it by present-
ing experimental results. Section 6 discusses our method.
Finally, Section 7 mentions the conclusions and future work
of this research.

2. RELATEDWORK
Most early methods for constraint hierarchies, such as

the DeltaBlue constraint solver [8], handled local propa-
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gation (or dataflow) constraints by using a graph-theoretic
approach. Such methods have difficulty in processing simul-
taneous constraints, and are limited to simple problems.

Linear solvers such as Cassowary [1, 6], QOCA [6, 16], and
HiRise [12] appropriately treat simultaneous situations in
constraint hierarchies by linear or quadratic programming.
However, they are not applicable to nonlinear constraints.

To solve hierarchies of nonlinear constraints, approximate
methods have recently been developed. The Chorus con-
straint solver [13] approximately processes constraint hier-
archies by combining nonlinear optimization with a genetic
algorithm. In [14], a method is presented that handles com-
plex graphical constraints such as nonoverlap constraints by
dynamically approximating them by linear constraints. To
our knowledge, however, there are no methods proposed that
solve hierarchies of nonlinear constraints as precisely as our
method presented in this paper.

Geometric constraint solvers have been studied in the
fields of geometric reasoning and computer-aided design [15,
17]. A major approach in these fields is to satisfy constraints
in a “constructive” fashion by appropriately placing geomet-
ric objects step by step according to the analysis of con-
straint problems. Although it achieves fast and accurate
constraint satisfaction, it is limited in handling preferences
of constraints.

Preferences of constraints can be treated by other frame-
works than constraint hierarchies. For example, partial con-
straint satisfaction [9] and semiring-based constraint satis-
faction [3] are sufficiently general to handle constraint hi-
erarchies. Also, in [2], an approach to handling nonlinear
constraints in such a general framework is presented. How-
ever, we restrict our attention to constraint hierarchies in
this research since they are widely used and practically im-
portant in the field of user interfaces.

3. WEIGHTED LEAST SQUARES
This section describes the weighted least squares [10, 11]

on which our method is based.

3.1 The Gauss-Newton Method
Gulliksson et al. proposed a hybrid algorithm [10] that

combines the Gauss-Newton method and a generalized
Newton-Raphson method to solve least squares problems
concerning weighted sums of squares of nonlinear functions.
In this paper, we direct our attention to the Gauss-Newton.

The method handles a least squares problem that mini-
mizes an objective function defined with a vector function

f = (f1, f2, . . . , fm)T

consisting of m functions fi : Rn → R, and a diagonal
matrix

W = diag(w1, w2, . . . , wm)

with m nonnegative reals wi such that wi ≥ wj for i < j, as
follows:

min
x

1

2

∥∥∥W 1/2f (x)
∥∥∥2

, (1)

where
∥∥∥W 1/2f (x)

∥∥∥2

=
m∑

i=1

wif
2
i (x),

which is multiplied by 1/2 here by convention.

The problem (1) could be regarded as an ordinary least
squares problem if it included weights wi into functions gi(x)
by letting gi(x) =

√
wifi(x). However, it is expected that

(1) will allow a better numerical stability of a resulting al-
gorithm when there exists a wide variety of weights. In ad-
dition, required constraints expressed with fi(x) = 0 will be
realized by allowing weights wi with infinite values, which
means that two-level constraint hierarchies can be handled.

To solve (1) with the Gauss-Newton method, its k-th it-
eration solves the following linear least squares problem de-
fined with the temporary solution xk:

min
pk

1

2

∥∥∥W 1/2 {J(xk)pk + f (xk)}
∥∥∥2

, (2)

where J is the m × n Jacobian matrix of f . This problem
yields the search direction pk, and then, by calculating the
steplength αk, it obtains the temporary solution

xk+1 = xk + αkpk

for the next iteration.

3.2 Modified QR Decomposition
Gulliksson et al. solve the linear least squares problem (2)

as follows. First, the following system equation, which is
equivalent to (2), is introduced:[

M J
JT 0

] [
λ
p

]
=

[ −f
0

]
, (3)

where M = W−1, and the arguments xk of f and J and the
index k of pk are omitted for simplicity.

To solve the system equation (3), the modified QR decom-
position [11] of J is adopted. Using an m×m matrix Q that
is M -invariant (i.e., QMQT = M), it decomposes J as

JΠ = Q

[
R
0

]
,

where Π is an n× n permutation matrix, and R is an n× n
upper triangular matrix. This QR decomposition gives p
satisfying (3), by computing

p = −Π
[
R−1 0

]
Q−1f .

This QR decomposition is constructed from the following
n matrix transformations: the i-th step transforms the (m−
i+1)× (n− i+1) matrix Ai, which has been obtained from
the previous step (for the first step, A1 = J is used), into
a matrix whose first column has zeroes except for the top
element. Specifically, given

Mi = diag(w−1
i , w−1

i+1, . . . , w
−1
m ),

the i-th transformation is performed by using an Mi-
invariant matrix Qi such that Q2

i = Im−i+1 (here and below
we indicate by Is the s × s identity matrix) and

QiAiΠi =

[
αi bi

0 Ai+1

]
,

as well as an appropriate permutation matrix Πi (which cor-
responds to column pivoting). The actual Qi is defined as

Qi = Im−i+1 − (a + αie1)(w
−1
i M−1

i a + αie1)
T

αi(αi + a1)
, (4)

where a is the first column of AiΠi, a1 is the first element
of a, e1 is the column vector of size (n− i + 1) with 1 as its
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first element and 0 as the others, and

αi = sign(a1)
√

w−1
i aT M−1

i a.

The advantage of solving the system equation (3) by the
modified QR decomposition is its numerical stability when
there is a wide variety of the diagonal elements of M (i.e.,
the inverses of the weights). In that case, the matrix in (3) is
ill-conditioned, which follows that standard methods for (3)
will only find solutions with low precision. By contrast, the
modified QR decomposition avoids such a numerical prob-
lem. In addition, it enables infinite weights by allowing ze-
roes as the corresponding diagonal elements of M , which
results in a special form of Qi.

4. OURMETHOD
This section proposes a method for handling hierarchies of

nonlinear constraints, based on the weighted least squares.

4.1 Reformulation of Constraint Hierarchies
First, reformulating a constraint hierarchy as a least

squares problem, we formalize what we handle by our new
method. The method deals with a problem that consists of a
finite number of levels containing equal-strength constraints
in a similar way to an ordinary constraint hierarchy.

The least squares problem is formalized in the following
way. Consider that each level is indexed by an integer k such
that 0 ≤ k ≤ l for a given positive integer l (as in constraint
hierarchies, we use level 0 for the strongest constraints, and
levels with larger indices for weaker constraints, which is
formally defined below). Also, for each level k, let mk be
the number of constraints at the level, and suppose that each
j-th constraint at the level is represented as1 fk,j(x) = 0.
Then solutions x are defined as follows:

min
x

1

2

l∑
k=0

mk∑
j=1

σl−kf2
k,j(x), (5)

where σ is a positive real, which is a parameter used to
express strengths.

The solutions to the least squares problem (5) approx-
imate the ones to the similar constraint hierarchy that
is solved with the criterion known as least-squares-better
(LSB) [5, 6]. In particular, the limits of the solutions x as
σ → ∞ (which we use in our actual method) are equal to the
LSB solutions of the hierarchy, unless there is inconsistency
among constraints at level 0. Intuitively, this is because, for
a sufficiently large σ, stronger constraints (i.e., with smaller
k) are associated with larger weights σl−k, and therefore are
more respected in the least squares.

This formulation of constraint hierarchies has close re-
lation to that for the Chorus constraint solver [13]; both of
them formalize constraint hierarchies by minimization of ob-
jective functions. The major difference is that the above for-
mulation allows much more distinct strengths than that for
Chorus. Since we actually use the case σ → ∞, the above
formulation realizes completely hierarchical strengths. By
contrast, the formulation for Chorus considers only approx-
imate strengths.

1An inequality constraint f(x) ≥ 0 can also be expressed in
such an equality form, by adding a slack variable s and then
letting g(x, s) = f(x) − s2.

4.2 Hierarchical QR Decomposition
Our method for constraint hierarchies solves the least

squares problem (5) in case σ → ∞. More specifically, it
realizes satisfaction of hierarchies of nonlinear constraints
by replacing the modified QR decomposition in Gulliksson
et al.’s Gauss-Newton method with a novel technique called
the hierarchical QR decomposition and described below.

Assume that constraints are sorted in the strength order;
that is, the objective function has the following form:

f = (f0,1, . . . , f0,m0 , f1,1, . . . , f1,m1 , . . . , fl,1, . . . , fl,ml
)T .

Then we have

m = m0 + m1 + · · · + ml.

Also, by the correspondence of (5) to (1), we have the matrix
W with weights and the matrix M with inverse weights in
the following form:

W = diag(σlIm0 , σl−1Im1 , . . . , Iml )

M = W−1 = diag(σ−lIm0 , σ1−lIm1 , . . . , Iml ).

We need to consider w−1
i M−1

i to determine Qi. Choose k
such that

k−1∑
j=0

mj < i ≤
k∑

j=0

mj ,

and let

m′
k =

k∑
j=0

mj − i + 1.

Then w−1
i M−1

i is expressed as follows:

w−1
i M−1

i = σk−l diag(σl−kIm′
k
, σl−k−1Imk+1 , . . . , Iml )

= diag(Im′
k
, σ−1Imk+1 , . . . , σk−lIml).

Although Qi could be determined by using this w−1
i M−1

i

in (4), we do not use this form of Qi here. In the hierarchical
QR decomposition, we instead use Q∗

i , which corresponds to
the limit of Qi as σ → ∞, that is,

Q∗
i = Im−i+1 −

(a + α∗
i e1)

([
a′

0

]
+ α∗

i e1

)T

α∗
i (α

∗
i + a1)

,

where a′ is the column vector consisting of the first m′
k

elements of a, and

α∗
i = sign(a1)

∥∥a′∥∥ .

Note that, as σ → ∞, the following holds:

w−1
i M−1

i → diag(Im′
k
, 0mk+1+···+ml ),

where 0mk+1+···+ml is the (mk+1 + · · ·+ml)× (mk+1 + · · ·+
ml) zero matrix.

Intuitively, the i-th transformation using Q∗
i distributes

violations of linearly approximated constraints with strength
k in a least squares manner, whereas it leaves weaker con-
straints for later transformations. These transformations are
performed in the strength order since constraints are sorted
beforehand.

An obvious advantage of using Q∗
i instead of Qi is that

the QR decomposition no more depends on the parameter σ.
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Excluding σ is also expected to contribute to a better nu-
merical stability of the resulting algorithm. Another benefit
is that the QR decomposition is more efficient because of
the simpler structure of Q∗

i .

5. EXPERIMENTAL EVALUATION
To evaluate the hierarchical nonlinear constraint satisfac-

tion method proposed in the previous section, we imple-
mented a prototype program in C++, and performed an
experiment. In the experiment, we used a geometric lay-
out problem that handles two constraint hierarchies in the
following scenario.

Constraint hierarchy 1 (CH1): Suppose that a point
(x, y) is located at (150, 150). We newly constrain the
point to be on the circle whose center is at the origin
and whose radius is 100. This situation is expressed
by the following constraint hierarchy:

required
√

x2 + y2 = 100
weak x = 150
weak y = 150.

Here we specify the circular positioning constraint as
the required one, and also the information on the orig-
inal position as the weak ones, by which we minimize
the movement of the point. The theoretical solution
of this hierarchy is (x∗

1, y
∗
1) = (100/

√
2, 100/

√
2) =

(70.7 · · · , 70.7 · · · ).
Constraint hierarchy 2 (CH2): Next, keeping the cir-

cular positioning constraint, an attempt is made to
move the point (x, y) to (−90, 120).2 It is represented
by the following constraint hierarchy:

required
√

x2 + y2 = 100
strong x = −90
strong y = 120
weak x = x1

weak y = y1,

where x1 and y1 indicate the solutions computed from
CH1. Here we specify the movement constraint as the
strong, which results in giving a stronger preference to
the circular positioning constraint. The information on
the original location of the point is unnecessary in this
case; however, since it is generally unknown without
constraint satisfaction, we leave the information as the
weak constraints. The theoretical solution is (x∗

2, y
∗
2) =

(−60, 80).

We compiled the program by using GCC 2.95.3 with the
–O3 option, and executed it on a 1.13 GHz Pentium III-M
processor running Linux 2.2.25. We used double precision
for floating point arithmetic.

By solving these constraint hierarchies with this program,
we obtained the results shown in Table 1. The errors indi-
cated here are the distances ‖(x, y) − (x∗, y∗)‖ between the
computed solutions (x, y) and the theoretical ones (x∗, y∗).
We also illustrate the changes of the temporary solutions
during the iterations in Figure 1. These results indicate
that our constraint satisfaction method processes these con-
straint hierarchies appropriately, obtaining sufficiently pre-
cise solutions for display on the computer screen.
2This situation is difficult for the constraint solver since the
movement is more drastic than by ordinary mouse dragging.

Table 1: Results of the experiments on the satisfac-
tion of the constraint hierarchies.

Hierar- Computational Numbers of Computation
chies errors iterations times

CH1 2.6 × 10−14 1 < 10 ms
CH2 2.9 × 10−3 13 < 10 ms

(a)

(b)

Figure 1: Changes of temporary solutions in the sat-
isfaction of the constraint hierarchies (a) CH1 and
(b) CH2.
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6. DISCUSSION
Previous research on constraint hierarchies often focused

on incremental constraint satisfaction [1, 6, 8, 12, 14, 16].
By contrast, we have not considered incrementality in this
research. This is because nonlinear constraint satisfaction
typically needs to considerably change elements of internal
matrices, which weakens the effect of incrementality. How-
ever, if we can expect constraint hierarchies to be “almost
linear” as in [14], incrementality will be useful for speeding
up constraint satisfaction.

Our hierarchical nonlinear constraint satisfaction method
is not guaranteed to obtain global optimal solutions. In
general, numerically finding global optimal solutions is a
hard problem. An approach to this problem is to combine a
numerical method with a genetic algorithm [13], and is also
applicable to our method.

Gulliksson et al. proposed combining the Gauss-Newton
method with a generalized Newton-Raphson (GNR) method
for nonlinear least squares, and showed that the GNR
method reduces numbers of iterations when it is close to
solutions [10]. The GNR method is expected to have a sim-
ilar effect on hierarchical constraint satisfaction. However,
we have not successfully extended the GNR method in such
a way. Also, it should be noted that the GNR method re-
quires computing Hessian matrices of constraint functions at
each iteration, which is time-consuming in general. There-
fore, it is unclear that the GNR method could reduce the
total amount of computation time in ordinary applications.

A more promising direction is to develop a variant of
quasi-Newton methods [4, 7] for hierarchical constraint sat-
isfaction. Unlike the Newton-Raphson method (and the
GNR method), a quasi-Newton method does not need Hes-
sian matrices, and instead constructs approximate matrices
by itself. It is known that quasi-Newton methods and their
variants have been successful in many problems (e.g., se-
quential quadratic programming for constrained nonlinear
optimization [7]). To develop such a method for hierarchi-
cal constraint satisfaction is a challenging open problem.

7. CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a method for solving nonlinear

constraints with hierarchical preferences. The method finds
precise local optimal solutions by combining the hierarchical
QR decomposition with the Gauss-Newton method.

The next step of this research is to develop an easy-to-use
constraint solver that adopts our method. We are also plan-
ning to implement several applications that use the solver
to handle geometric constraints, to prove the effectiveness
of our method by applying it to larger and more practical
problems.
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