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ABSTRACT

We present a numerical optimization-based method for visualizing
undirected graphs. Our method is a variant of force-directed graph
drawing, and has sufficient generality to adopt different basic force
models including those for the Kamada-Kawai and Fruchterman-
Reingold methods. To achieve efficiency, we use the L-BFGS
method for numerical optimization. Our experimental results show
that the method gives good performance when combined with the
Kamada-Kawai model.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms

1 INTRODUCTION

Graphs provide abstract relationships between objects. In a graph,
an object is represented as a vertex, and a relationship between two
objects is expressed as an edge that connects two vertices corre-
sponding to the objects. Graphs are categorized into classes such as
trees, directed graphs, and undirected graphs, based on their struc-
tures and properties associated with vertices and edges. Visual-
izations of graphs are often useful for intuitively capturing overall
structures of the graphs. Therefore, researchers have been studying
automatic methods for graph drawing. Such methods are usually
developed for particular classes of graphs.

Force-directed methods are often used for drawing undi-
rected graphs. A force-directed method builds from a graph a
(pseudo-)physical system of vertices that attract/repel each other by
force, and computes an equilibrium state of the system. In general,
a force-directed method consists of two key components, a model
and an algorithm [7]; the model defines how to calculate forces,
and the algorithm gives the way to actually compute the equilib-
rium state.

Most of the existing force-directed methods can be viewed as
using simulation algorithms. Such an algorithm performs discrete-
time simulation of a pseudo-physical system. At each time step,
forces exerted on vertices are calculated based on the force model,
and then each vertex is moved in the force direction (which as-
sumes the pseudo-physical law mv = F instead of Newton’s second
law ma = F). To speed up simulation, researchers have been doing
considerable work. One common technique is a multi-level method
that uses coarse approximations of graphs [2, 13, 19, 30], and an-
other common technique is a tree-code method that reduces force
calculation by approximately processing interactions between re-
mote vertices [13, 19, 22, 27].

Numerical optimization [25] is also used for force-directed graph
drawing. The Kamada-Kawai method [20] is perhaps the best
known in this category. It attaches a set of springs to vertices, and
computes the equilibrium state by minimizing the total energy of
the springs, which is done by repeatedly applying Newton’s method
to a selected vertex at a time. Tunkelang [28, 29] developed an-
other numerical optimization method that used a conjugate gradi-
ent method. He also pointed out that simulation algorithms used in
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most of the force-directed methods could be regarded as steepest
descent, a straightforward method of numerical optimization. This
suggests that numerical optimization approaches to force-directed
methods may be promising. However, there have not been many
algorithms proposed.

In this paper, we revisit such a numerical optimization approach
to force-directed graph drawing. We present a method that is simple
but has the following characteristics:

• It has sufficient generality to adopt different basic force mod-
els used in previous simulation and optimization methods;

• It uses the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) method [24] for efficient numerical opti-
mization;

• It runs at reasonably high speed without using multi-level nor
tree-code methods.

Our method is based on the general combination of conservative
forces and a scalar potential, and is applicable to different force
models using conservative forces. In fact, we show that four basic
models, namely Kamada-Kawai [20], Hooke-Coulomb [7], Eades
[10], and Fruchterman-Reingold [11], can be incorporated into our
method. The L-BFGS method that we use for numerical optimiza-
tion is an efficient quasi-Newton method that reduces the necessary
memory as well as does not require second partial derivatives. Our
experimental results show that our method provides good perfor-
mance especially when combined with the Kamada-Kawai model.

The rest of this paper is organized as follows. After presenting
related work in Section 2, we provide preliminary introductions to
quasi-Newton methods and the L-BFGS method in Section 3. Next,
in Section 4, we provide how to construct our method, and then its
implementation in Section 5. In Section 6, we present the results of
experiments on our method. After discussing our work in Section 7,
we describe conclusions and future work in Section 8.

2 RELATED WORK

Researchers have been studying methods for force-directed graph
drawing. Although most of those methods use simulation algo-
rithms (i.e., steepest descent), there are other methods that use nu-
merical optimization approaches. As described in Section 1, the
Kamada-Kawai (KK) method [20] is a well-known graph drawing
method based on numerical optimization; it uses Newton’s method
to solve the optimization problem. The same force model as KK’s
is adopted by the stress majorization method [12], which is an op-
timization algorithm specialized in the KK model and is usually
more efficient than the KK method. Tunkelang [28, 29] developed
a graph drawing method using a conjugate gradient method and
a variant of the Fruchterman-Reingold force model [11]; his ex-
periments showed that his method was several-times faster than a
steepest descent method.

Force-directed methods such as KK are known to be closely re-
lated to multidimensional scaling (MDS). Therefore, efficient nu-
merical techniques developed for MDS have been applied to graph
drawing [3, 4]. MDS is also used to enable interactive graph draw-
ing [17].

It is possible to restrict force models to obtain problems that can
be efficiently handled. Introducing linearly-defined forces derives
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Tutte’s barycenter method [7]. Methods such as ACE [21] and SDE
[5] achieve efficient algorithms by using special formulations of
graph drawing that result in eigenvector calculation. A similar ap-
proach is adopted by the method using high-dimensional embed-
ding [15].

There have been attempts to obtain more expressive force mod-
els. In [6], a method using simulated annealing was proposed and
applied to a general force model that handled the boundary of the
layout area and the number of edge crossings. In [23], a force model
adopting edge repulsion was proposed to better handle graphs with
nonuniform degrees.

Combining constraints with graph drawings is another important
research direction. The Chorus constraint solver [16] handles graph
layout constraints based on the KK model by using the combination
of the BFGS method for local search and a genetic algorithm for
global search. In [8], stress majorization was extended to support a
certain class of linear constraints. In [9], a constrained graph lay-
out method was proposed to handle topology constraints. In [26],
mixed integer programming was adopted to handle graph drawings
with constraints.

3 PRELIMINARIES

This section provides preliminary introductions to quasi-Newton
methods and the L-BFGS method.

3.1 Quasi-Newton Method
Let p be an n-dimensional real vector, and f be a real-valued two-
times partially differentiable function over an n-dimensional real
domain. Then minimizing f (p) requires ∇ f (p) = 0, where ∇ f (p)
indicates the gradient (or first partial derivative) of f at p.

Let pk be the approximate solution at step k. Consider the fol-
lowing linear approximation of ∇ f around pk:

∇ f (pk+1) = ∇ f (pk)+B(pk)(pk+1 −pk),

where B(pk) indicates the Hessian matrix (or second partial deriva-
tive) of f at pk. Assuming ∇ f (pk+1) = 0 in the linear approxima-
tion, Newton’s method iteratively solves the following for pk+1:

B(pk)(pk+1 −pk) = −∇ f (pk).

A quasi-Newton method [25] further introduces an approxima-
tion Bk of B(pk). After obtaining pk+1 by using Bk, it computes
Bk+1 from Bk and other known information by adopting an update
formula such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
formula.

To obtain a better convergence, such Newton-based methods
usually adopt a line search technique. It updates pk+1 by computing

pk+1 = pk −α(B(pk))−1∇ f (pk)

with an appropriate real α . The vector −(B(pk))−1∇ f (pk) is called
a search direction.

3.2 L-BFGS Method
The limited-memory BFGS (L-BFGS) method [24] is a quasi-
Newton method that uses a variant of the BFGS formula. Its ad-
vantage is that it reduces the necessary memory because it needs
only several vectors to compute the search direction −B−1

k ∇ f (pk)
(without storing Bk nor B−1

k ). Let gk = ∇ f (pk), ∆pk = pk+1 −pk,
∆gk = gk+1 −gk, and ρk = 1/((∆gk)T∆pk). Also, let H0

k be the ini-
tial approximation of the inverse Hessian matrix B−1

k (which is typ-
ically a diagonal matrix). Assume that information about the past h
(often less than 10) iterations is used. Then the search direction is
obtained by the following two steps:

1. Let q = gk. For each i = k − 1, . . . ,k − h, compute αi =
ρi(∇pi)Tq and q = q−αi∆gi;

2. Let r = H0
k q. For each i = k − h, . . . ,k − 1, compute βi =

ρi(∆gi)Tr and r = r+(αi −βi)∆pi.

After these steps we have B−1
k ∇ f (pk) = r.

4 OUR METHOD

This section presents our numerical optimization-based method for
force-directed graph drawing. After introducing necessary nota-
tions, we describe basics for our method, then how to treat four
basic force models in our method, and the underlying numerical
optimization algorithm.

Notations. Let G = (V,E) be a graph with a set V = {1, . . . ,n}
of n vertices and a set E ⊆ V ×V of m edges. We assume only
undirected graphs; i.e., (i, j) ∈ E always implies ( j, i) ∈ E. Let
pi = (xi,yi) for each vertex i ∈ {1, . . . ,n} be the position of i. Then
a drawing of G is represented as p = (x1,y1, . . . ,xn,yn). We also let
pi j = p j −pi. In this paper, we focus on two-dimensional drawings
of graphs, but our results will be easily extended to three- or higher-
dimensional cases.

4.1 Basics

In a numerical optimization approach such as the Kamada-Kawai
method [20], it is typically necessary to introduce an energy that
should be minimized. Mathematically, we can explain numerical
optimization approaches from the viewpoint of conservative forces
and a scalar potential. Let each Fi = (Fx

i ,Fy
i ) be the force exerted

on vertex i, and let F = (Fx
1 ,Fy

1 , . . . ,Fx
n ,Fy

n ). If forces are conser-
vative, we can find a scalar potential Φ that has the following rela-
tionship with F:

F = −∇Φ, (1)

where ∇Φ indicates the gradient of Φ, i.e.,

∇Φ =
(

∂Φ
∂x1

,
∂Φ
∂y1

, . . . ,
∂Φ
∂xn

,
∂Φ
∂ yn

)
.

Equation (1) means that F is directed toward the steepest descent
direction of Φ, and thus an equilibrium state F = 0 is achieved by a
local minimum of Φ, i.e.,

F = −∇Φ = 0.

Therefore we can find a drawing p of G by solving the optimization
problem with Φ as its objective function, i.e.,

argmin
p

Φ. (2)

In other words, if conservative forces are used, force-directed
graph drawing can be reformulated as an optimization problem. It
should also be noted that solving (2) does not require steepest de-
scent methods. Instead, more sophisticated numerical optimization
methods may be used to solve the generalized problem (2), which
we do in this paper.

4.2 Force Models

Next, we show that four basic force models use conservative
forces and allow defining scalar potentials. These force models
are Kamada-Kawai, Hooke-Coulomb, Eades, and Fruchterman-
Reingold.
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Kamada-Kawai. The Kamada-Kawai (KK) method [20] is
perhaps the most popular among those using numerical optimiza-
tion. The force model of KK, called the spring model, is easy for
our method to incorporate since KK explicitly provides a scalar po-
tential in terms of the spring energy.

KK assumes a connected graph, and attaches a spring to any pair
of vertices (both adjacent and non-adjacent). Each spring for ver-
tices i and j is assigned the natural length li j that is the graph-
theoretic distance between i and j. The spring constant for the
spring between i and j is 1/l2

i j . Then the force Fi exerted on each i
is calculated by using Hooke’s law:

Fi = −∑
j 6=i

|pi j|− li j

l2
i j

pi j

|pi j|
.

Then, as known in classical mechanics, the scalar potential Φ is
calculated by the following:

Φ = ∑
i

∑
j>i

(|pi j|− li j)2

2 l2
i j

.

It should be noted that we no longer need the second partial
derivatives of Φ, which is partly needed in the original KK method;
we will review this point in Subsection 4.3.

Hooke-Coulomb. The combination of springs and electrical
forces also derives a force-directed method. In the simplest form
(although it seems not to be widely used), such a method can be
formulated using laws from classical physics, i.e., Hooke’s law for
springs and Coulomb’s law for electrical forces [7]. Let us call this
method Hooke-Coulomb (HC). Unlike KK, HC attaches springs
only to adjacent pairs of vertices, and instead introduces repulsive
electrical forces for non-adjacent pairs of vertices as follows:

Fi = − ∑
(i, j)∈E

k1(|pi j|− li j)
pi j

|pi j|
+ ∑

j 6=i

k2

(|pi j|+ ε)2
pi j

|pi j|
,

where li j is the natural spring length for edge (i, j), k1 and k2 are
certain constants, and ε is a softening parameter (small positive
number) to avoid numerical failure when pi j is nearly zero. We
can compute the scalar potential Φ by the following:

Φ = ∑
(i, j)∈E∧ j>i

k1(|pi j|− li j)2

2
+∑

i
∑
j>i

k2

|pi j|+ ε
.

Eades. Eades proposed a classical force-directed method
called the spring embedder [10]. As HC does, it uses the com-
bination of springs and electrical forces. However, it introduces
logarithmic-strength springs instead of ordinary springs based on
Hooke’s law. Specifically, the forces in Eades’s model are calcu-
lated as follows:

Fi = − ∑
(i, j)∈E

(
k1 log

|pi j|
li j

)
pi j

|pi j|
+ ∑

j 6=i

k2

(|pi j|+ ε)2
pi j

|pi j|
,

where li j is the natural spring length for edge (i, j), k1 and k2 are
certain constants (e.g., li j = 1, k1 = 2, and k2 = 1 are used in [10]),
and ε is a softening parameter. This force model is also conserva-
tive, and we can compute the scalar potential as follows:

Φ = ∑
(i, j)∈E∧ j>i

k1|pi j|
(

log
|pi j|
li j

−1
)

+∑
i

∑
j>i

k2

|pi j|+ ε
.

Fruchterman-Reingold. The Fruchterman-Reingold (FR)
method [11] uses a simulation algorithm, and its force model
is often used in other simulation-based methods (e.g., [19, 22]).
In this model, attractive forces are given to adjacent pairs of
vertices, and repulsive forces are imposed on any pairs of vertices.
Specifically, the force Fi is defined as follows:

Fi = − ∑
(i, j)∈E

|pi j|
k

pi j + ∑
j 6=i

k2

|pi j|+ ε
pi j

|pi j|
,

where k is a certain constant (that can be regarded as an ideal length
of an edge [11]), and ε is a softening parameter. This force model
is conservative, and therefore we can define the scalar potential Φ
as follows:

Φ = ∑
(i, j)∈E∧ j>i

|pi j|3

3k
−∑

i
∑
j>i

k2 log
(

1+
|pi j|

ε

)
.

4.3 Algorithm
We solve the optimization problem (2) to perform force-directed
graph drawing. As shown in the previous subsection, the objective
function Φ is a scalar potential that is typically nonlinear. Previ-
ous force-directed methods solve such problems by using steep-
est decent (i.e., simulation-based algorithms), Newton’s method
(e.g., Kamada-Kawai [20]), and a conjugate gradient method (e.g.,
Tunkelang’s method [28, 29]).

As already mentioned, steepest descent is used by most of the
existing force-directed methods that are based on simulation. It
is quite simple, and each iteration can be performed at a low cost.
However, its convergence is slower than more sophisticated numeri-
cal algorithms, and therefore steepest descent is not preferable from
the numerical computation viewpoint. It should also be noted that
straightforward Newton’s method is not desirable. As described
in Subsection 3.1, it needs the Hessian matrix (or second partial
derivative) of Φ whose computation is expensive. Quasi-Newton
methods [25] can resolve this difficulty. Instead of using the actual
Hessian matrix, they approximately compute the Hessian matrix by
applying a certain update formula.

For our force-directed graph drawing method, we choose a quasi-
Newton method called L-BFGS [24]. As described in Subsec-
tion 3.2, it reduces the necessary memory by storing only several
vectors instead of the approximate Hessian matrix. In spite of the
limited memory requirement, it is known to work well especially
for large-scale optimization problems, and has been widely used in
various fields such as machine learning [1].

Applying the L-BFGS method to our optimization problem (2)
is straightforward. We can use Φ and ∇Φ ( = −F) in our prob-
lem as f and ∇ f respectively in the L-BFGS method described in
Subsection 3.2.

5 IMPLEMENTATION

Using the method described in the previous section, we imple-
mented a graph drawing system called AGI.1 Its program is written
in C++, and currently consists of approximately 3300 lines of code.
We adopted the libLBFGS library2 to perform the L-BFGS method
using double-precision floating-point numbers.

5.1 Implementing Force Models
A major characteristic of the AGI system is that it allows im-
plementing a force model easily. It provides a template class
LBFGSBasedDrawer for implementing L-BFGS-based force-
directed methods. An actual method can be built as a subclass of

1This is a reimplementation of our previous AGI system [18]. The cur-
rent version implements only the method presented in this paper.

2http://www.chokkan.org/software/liblbfgs/
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template<> double
LBFGSBasedKamadaKawaiDrawer<2>::
evaluate(const double* p, // current drawing

double* g, // gradient of the scalar potential
// to compute

const int n, // number of variables
const double step) {

for (int k = 0; k < n; ++k) g[k] = 0;
double phi = 0; // scalar potential to compute
for (int i = 0; i < n / 2; ++i) {
// for each vertex i
double xi, yi;
get(p, i, xi, yi); // get the position of i
for (int j = i + 1; j < n / 2; ++j) {
// for each vertex j > i
double xj, yj;
get(p, j, xj, yj); // get the position of j
double xij = xj - xi;
double yij = yj - yi;
double dst = norm2(xij, yij); // current distance

// between i and j
float lij = distanceMatrix_(i, j); // graph-theoretic

// distance
double dst_lij = dst - lij;
phi += dst_lij * dst_lij / (2 * lij * lij);
double dphi_dxi = -dst_lij * xij / (lij * lij * dst);
double dphi_dyi = -dst_lij * yij / (lij * lij * dst);
add(g, i, dphi_dxi, dphi_dyi); // update g for i
add(g, j, -dphi_dxi, -dphi_dyi); // update g for j

}
}
return phi; // computed scalar potential

}

Figure 1: Implementation of the Kamada-Kawai force model.

LBFGSBasedDrawer by implementing necessary virtual mem-
ber functions as well as a constructor and a destructor. The most
import function is evaluate, which performs the calculation of
the scalar potential Φ and its gradient ∇Φ. Figure 1 shows the im-
plementation of the KK model.

5.2 Memory Requirements
The amount of memory required for drawing a graph depends on
the used force model. Among the four force models presented in
the previous section, KK requires the largest amount of memory
because it needs to store the graph-theoretic distance li j between
each pair of vertices i and j. In our implementation, a single-
precision floating-point number is used to store such a distance,3
and the library used to compute graph-theoretic distances needs a
dense square matrix. Therefore, for this purpose, we need 4n2 bytes
for n vertices (e.g., nearly 400 megabytes for 10000 vertices).

The L-BFGS method does not require such a large amount of
memory. In fact, the libLBFGS library (as of version 1.10) stores
only 2(h+3) n-dimensional vectors, where h indicates the number
of the past iterations to memorize and is 6 in our implementation
(which is the default value in this library). Since we use double-
precision floating-point numbers, we need 144n bytes for this pur-
pose (e.g., approximately 1.4 megabytes for 10000 vertices).

6 EXPERIMENTS

We performed experiments on our method by using the AGI system
described in the previous section. We used the same benchmark
dataset as [2].4 The dataset consists of 43 graphs with 34 to 16840
vertices. Although these graphs have concrete names, we also use
IDs G01 to G43 to indicate them for brevity. Table 1 shows their
IDs as well as the numbers of their vertices and edges.

We compared the use of different force models in our method.
In the following, we refer to the instances of our method using the

3While we use double-precision floating-point numbers in the L-BFGS
method, we adopt single-precision floating-point numbers to store graph-
theoretic distances; this is because graph-theoretic distances are usually sim-
ple. Neato/major of Graphviz, which we employed in our experiments (that
we describe in Section 6), also uses single- and double-precision floating-
point numbers in the same way.

4http://ls11-www.cs.tu-dortmund.de/staff/klein/gdmult10

Table 1: Graphs in the benchmark dataset.

IDs Names # of vertices # of edges
G01 karateclub 34 78
G02 cylinder rnd 010 010 97 178
G03 snowflake A 98 97
G04 spider A 100 220
G05 sierpinski 04 123 243
G06 flower 001 210 3057
G07 tree 06 03 259 258
G08 dg 617 part 341 797
G09 rna 363 468
G10 Grid 20 20 doublefolded 397 760
G11 Grid 20 20 singlefolded 399 760
G12 Grid 20 20 400 760
G13 protein part 417 597
G14 516.graph 516 729
G15 flower 005 930 13521
G16 snowflake B 971 970
G17 cylinder rnd 032 032 985 1866
G18 grid rnd 032 985 1834
G19 spider B 1000 2200
G20 sierpinski 06 1095 2187
G21 ug 380 1104 3231
G22 tree 06 04 1555 1554
G23 Grid 40 40 doublefolded 1597 3120
G24 Grid 40 40 singlefolded 1599 3120
G25 Grid 40 40 1600 3120
G26 esslingen 2075 5530
G27 add20 2395 7462
G28 data 2851 15093
G29 3elt 4720 13722
G30 uk 4824 6837
G31 add32 4960 9462
G32 4970.graph 4970 7400
G33 dg 1087 7602 7601
G34 grid400 20 8000 15580
G35 tree 06 05 9331 9330
G36 cylinder rnd 100 100 9497 17941
G37 grid rnd 100 9497 17849
G38 snowflake C 9701 9700
G39 sierpinski 08 9843 19683
G40 spider C 10000 22000
G41 crack 10240 30380
G42 4elt 15606 45878
G43 cti 16840 48232

KK, HC, Eades, and FR models as L-BFGS/KK, L-BFGS/HC, L-
BFGS/Eades, and L-BFGS/FR respectively.

We also compared these instances of our method with other
methods provided as part of the Graphviz system:5 namely,
neato/KK (which implements the KK method [20]), neato/major
(which implements the stress majorization method [12]), fdp
(which implements the FR method [11]), and sfdp (which im-
plements the method presented in [19]). We used version
2.29.20111123.0545 of Graphviz.

We compiled both AGI and Graphviz by using the GCC 4.6.1
compiler. We executed the experiments on a 3.4 gigahertz quad-
core Core i7 processor6 with 16 gigabytes of memory running the
64-bit Linux 3.0.0 kernel.

6.1 Experimental Settings
In our experiments, for each combination of a method and a graph,
we normally executed the method ten times by giving different ran-
dom seeds (specifically, 10000k for k = 0,1, . . . ,9), but we executed
fdp only for graphs with less than 5000 vertices. In both AGI and
Graphviz, the random seeds were given to the srand48 function, and
then random numbers were generated by the drand48 function to

5http://www.graphviz.org/
6AGI and Graphviz run sequentially although the used processor has

four cores. Also, in the experiments, we disabled libLBFGS’s support for
the SSE/SSE2 SIMD extensions.
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Figure 2: Total execution times.
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Figure 3: Times for computing graph-theoretic distances.
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Figure 4: Times for numerical optimization.

obtain initial graph drawings. In our experiments, L-BFGS/KK and
neato/major generated the same initial drawings for the same ran-
dom seeds. Also, neato/KK generated its initial drawings that were
different only in translation from L-BFGS/KK and neato/major’s,
and the other methods generated their initial drawings that were dif-
ferent only in translation and scaling. In other words, for the same
random seed, any of these methods generated the initial drawings
that can be transformed into each other only by translation and scal-
ing.

We set the maximum numbers of iterations in L-BFGS/KK, L-
BFGS/HC, L-BFGS/Eades, L-BFGS/FR, and neato/major to 100.
We did not change the default values for the other parameters in-
cluding those for the libLBFGS library used in AGI.

6.2 Execution Times
Now we present the execution times of these methods. Figure 2
shows the averages of the total execution times. Regarding L-
BFGS/KK, neato/KK, and neato/major, we also measured the ex-

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

G
0

1
G

0
2

G
0

3
G

0
4

G
0

5
G

0
6

G
0

7
G

0
8

G
0

9
G

1
0

G
1

1
G

1
2

G
1

3
G

1
4

G
1

5
G

1
6

G
1

7
G

1
8

G
1

9
G

2
0

G
2

1
G

2
2

G
2

3
G

2
4

G
2

5
G

2
6

G
2

7
G

2
8

G
2

9
G

3
0

G
3

1
G

3
2

G
3

3
G

3
4

G
3

5
G

3
6

G
3

7
G

3
8

G
3

9
G

4
0

G
4

1
G

4
2

G
4

3

S
c
a

la
r 

p
o

te
n

ti
a

ls

Graphs

L-BFGS/KK
neato/KK

neato/major

Figure 5: Average final scalar potentials.
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Figure 6: Minimum final scalar potentials.
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Figure 7: Optimization of scalar potentials for the 3elt graph.

ecution times of main algorithmic components. Since all these
methods are based on the KK model, they need to compute graph-
theoretic distances between any pairs of vertices before numerical
optimization. Figure 3 presents the average times for computing
graph-theoretic distances, and Figure 4 gives the average times for
numerical optimization.

From these execution times we can see that, among the instances
of our method, L-BFGS/KK often provides the best performance.
Also, it should be noted that L-BFGS/KK is usually faster than
neato/KK, neato/major, and fdp, although it is much slower than
sfdp (which incorporates both multi-level and tree-code methods).

6.3 Scalar Potentials
We can quantitatively evaluate the results of L-BFGS/KK,
neato/KK, and neato/major by comparing the scalar potentials since
all of them use the KK model. Figure 5 presents the averages of fi-
nal scalar potentials, and Figure 6 gives the minimum final scalar
potentials.

 

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/PacificVis.2012.6183577. 
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

 



(a) L-BFGS/KK (b) L-BFGS/HC (c) L-BFGS/Eades (d) L-BFGS/FR

(e) neato/KK (f) neato/major (g) fdp (h) sfdp

Figure 8: The sierpinski 04 graph drawn by (a) L-BFGS/KK, (b) L-BFGS/HC, (c) L-BFGS/Eades, (d) L-BFGS/FR, (e) neato/KK, (f) neato/major,
(g) fdp, and (h) sfdp.

From these results we can see that L-BFGS/KK and neato/major
usually achieve almost equivalent final scalar potentials. However,
for the snowflake C and spider C graphs, L-BFGS/KK did not work
well. Although we have not yet analyzed this problem in detail,
these graphs are identified as “challenging” graphs in the literature
[14]. It should also be noted that neato/major took long time for
these graphs.

We can compare these methods by observing the changes of
scalar potentials during numerical optimization. Figure 7 plots the
scalar potentials that they obtained while drawing the 3elt graph
by using the same random seed. It should be noted that this plot
does not consider the actual times. L-BFGS/KK, neato/KK, and
neato/major performed 100, 152008, and 93 iterations. For this
graph all of them finally achieved equivalent scalar potentials.

6.4 Quality of Drawings
Now we show actual graph drawings. Figures 8, 9, and 10 show the
graph drawings produced by these methods. Among the instances
of our method, L-BFGS/KK usually provided the most pleasing
drawings, and L-BFGS/FR gave the next most pleasing drawings.
However, the quality difference between these two became larger
as they handled larger graphs.

It should be noted that L-BFGS/KK and neato/major usually pro-
duced similar drawings. This is because they use the KK model and
usually achieved equivalent final scalar potentials as shown in the
previous subsection.

6.5 L-BFGS/KK versus Sfdp
As these results suggest, among the instances of our method, L-
BFGS/KK often gives the best performance both in execution times
and drawing quality. Finally, for comparison of L-BFGS/KK with
sfdp, we show in Figure 11 drawings of larger graphs computed by
these methods.

7 DISCUSSION

A major advantage of our method is that it is more general than
most existing methods; as shown in Subsections 4.2 and 5.1, our

method is easily applicable to different force models as far as their
forces are conservative. By contrast, the stress majorization-based
method [12] is a quite opposite to our method; it is specialized in
the Kamada-Kawai model, and it seems not to be easy to apply it to
other force models. Because of the generality, our method will also
be good as a tool for testing new force models.

Another advantage of our method is that it can easily incorporate
existing numerical optimization methods and implementations. Be-
cause of the long history and large community of numerical opti-
mization, we can expect opportunities for obtaining good methods
and implementations. In fact, we already did it by using the ex-
isting L-BFGS implementation libLBFGS. If we had used a more
specialized method, it would have been more difficult to implement
its algorithm.

We have not yet included standard performance improvement
techniques such as multi-level methods [2, 13, 19, 30] and tree-
code methods [13, 19, 22, 27]. However, we foresee that multi-level
methods will be effective for our method. At least, the combination
of our method with a multi-level method is not difficult to imple-
ment since multi-level methods do not impose strong requirements
on associated single-level methods [2]. Also, tree-code methods
seem worth applying to our method. However, the combination of
our method with a tree-code method is not as clear as its combina-
tion with a multi-level method.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a numerical optimization-based method
for force-directed graph drawing. Our method was applicable to
different basic force models, and was implemented by using the
L-BFGS method for numerical optimization. Our experimental re-
sults showed that our method gave good performance when com-
bined with the Kamada-Kawai model.

Our future work includes introducing more general force models
that treat edge directions and other kinds of constraints [7]. Another
future direction is to incorporate a multi-level method and a tree-
code method to further improve the performance of our method.
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(a) L-BFGS/KK (b) L-BFGS/HC (c) L-BFGS/Eades (d) L-BFGS/FR

(e) neato/KK (f) neato/major (g) fdp (h) sfdp

Figure 9: The rna graph drawn by (a) L-BFGS/KK, (b) L-BFGS/HC, (c) L-BFGS/Eades, (d) L-BFGS/FR, (e) neato/KK, (f) neato/major, (g) fdp,
and (h) sfdp.
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(a) L-BFGS/KK (b) L-BFGS/HC (c) L-BFGS/Eades (d) L-BFGS/FR

(e) neato/KK (f) neato/major (g) fdp (h) sfdp

Figure 10: The sierpinski 06 graph drawn by (a) L-BFGS/KK, (b) L-BFGS/HC, (c) L-BFGS/Eades, (d) L-BFGS/FR, (e) neato/KK, (f) neato/major,
(g) fdp, and (h) sfdp.

(a) flower 005 by L-BFGS/KK (b) flower 005 by sfdp (c) 3elt by L-BFGS/KK (d) 3elt by sfdp

(e) uk by L-BFGS/KK (f) uk by sfdp (g) add32 by L-BFGS/KK (h) add32 by sfdp

(i) sierpinski 08 by L-BFGS/KK (j) sierpinski 08 by sfdp (k) crack by L-BFGS/KK (l) crack by sfdp

Figure 11: Graphs drawn by L-BFGS/KK and sfdp: (a)(b) flower 005, (c)(d) 3elt, (e)(f) uk, (g)(h) add32, (i)(j) sierpinski 08, and (k)(l) crack.
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