Locally Simultaneous Constraint Satisfaction

Hiroshi Hosobe,' Ken Miyashita,! Shin Takahashi,!
Satoshi Matsuoka,? and Akinori Yonezawal

! Department of Information Science, University of Tokyo
2 Department of Mathematical Engineering, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract. Local propagation is often used in graphical user interfaces to
solve constraint systems that describe structures and layouts of figures.
However, algorithms based on local propagation cannot solve simultane-
ous constraint systems because local propagation must solve constraints
individually. We propose the ‘DETAIL’ algorithm, which efficiently solves
systems of constraints with strengths, even if they must be solved si-
multaneously, by ‘dividing’ them as much as possible. In addition to
multi-way constraints, it handles various other types of constraints, for
example, constraints solved with the least squares method. Furthermore,
it unifies the treatment of different types of constraints in a single system.
We implemented a prototype constraint solver based on this algorithm,
and evaluated its performance.

1 Introduction

Local propagation is an efficient constraint satisfaction algorithm that takes ad-
vantage of potential locality of constraint systems. It is often used in graphical
user interfaces (GUISs) to solve constraint systems that describe structures and
layouts of figures.

Recent constraint solvers based on local propagation handle multi-way con-
strainis [4]. A multi-way constraint can be solved for any one of its variables. For
example, the constraint * = y + 2z is multi-way because it can be transformed
intoz — y+z,y— x—z, and z — x —y. Local propagation satisfies systems of
multi-way constraints by solving each constraint at most once in some order. For
example, consider a constraint system with the constraints v = wxz, w = y, and
z = y+ z. Figure 1a shows a constraint graph representing this system, where
circles and squares represent variables and constraints respectively. This system
can be satisfied by solving ¢ — y+ z, w — y, and v «— w x z in this order. This
case 1is illustrated by the correct solution graph in Fig. 1b, where arrows from
constraints point to variables to which the constraints output values. A solution
graph is a constraint graph that dictates how each constraint will be solved, and
a correct solution graph satisfies the following two properties: (1) the value of
each variable must be determined by at most one constraint, that is, the graph
should have no conflicts, and (2) all the constraints must be partially ordered,
that is, the graph must have no cycles.

* E-mail: detail@is.s.u-tokyo.ac.jp

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

Fig.1. (a) A constraint graph and (b) its correct solution graph

Multi-way constraints embody a problem that correct solution graphs are
not determined uniquely. Borning et al. proposed constraint hierarchies to cope
with this problem [7]. A constraint hierarchy is a system of constraints with
hierarchical strengths. If the system is over-constrained, it is solved so that there
are as many satisfied strong constraints as possible, which allows programmers
to implicitly specify solution graphs. In Fig. 2a, for example, the constraints
z =1 and x = 3 conflict. However, if # = 1 and « = 3 are associated with strong
and weak respectively, the constraint system is solved by satisfying only ¢ = 1
as shown in Fig. 2b. DeltaBlue is the first proposed algorithm that efficiently
solves hierarchies of multi-way constraints [2, 5]. It determines output variables
of constraints incrementally when a constraint is added or removed, and realizes
constraint satisfaction without spoiling the efficiency of local propagation.

strong weak

X x=1 x=3
@ [(PO<] o [O-1

Fig. 2. (a) A solution graph for an over-constrained system and (b) one for a constraint
hierarchy

Local propagation has a serious problem that constraint systems employed
in real applications often result in solution graphs with cycles or conflicts. For
example, consider a constraint system with the constraints a—b = [, (a+0)/2 =
m, stay(l), and edit(m). This system represents a typical situation where the
midpoint of two points is moved with a mouse, but its solution graphs contain
cycles by necessity, e.g. as illustrated in Fig. 3a. As another example, suppose a
constraint hierarchy with the constraints strong z = 1 and strong = 3. Even if
one wants to apply the least squares method to these constraints and to obtain
the solution « = 2, the resulting solution graph contains a conflict as shown
in Fig. 3b. Generally, in constraint systems that result in solution graphs with
cycles or conflicts, constraints need to be solved simultaneously.

We propose the ‘DETAIL’ algorithm, which efficiently solves constraint hier-
archies; even if constraints must be solved simultaneously, by ‘dividing’ them as

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

strong strong
x=1 x=3

(a)
Fig. 3. (a) A solution graph with a cycle and (b) one with a conflict

much as possible. This algorithm is efficient enough to be applied to constraint-
based GUIs since it incrementally finds parts of constraint systems that must be
solved simultaneously. In addition to multi-way constraints, it handles various
other kinds of constraints, for example, constraints solved with the least squares
method. Furthermore, it unifies the treatment of different types of constraints in
a single hierarchy. We implemented a prototype constraint solver based on this
algorithm, and evaluated its performance.

2 Locally Simultaneous Constraint Satisfaction

In this section, we present an extended theory of constraint hierarchies and the
DETAIL algorithm.

2.1 Constraints

In our extended constraint hierarchy theory, constraints are categorized into
solution types, which are determined by how the constraints are solved. For
example, there is a solution type of constraints that will be ignored if they cannot
be solved exactly, as with the DeltaBlue algorithm. Also, there is another solution
type of constraints that must be solved even in such a case by minimizing their
errors with the least squares method.

All constraints with an equal strength must belong to a single solution type.
Intuitively, this requirement is necessary because it is difficult to equally treat
constraints of different solution types.

Based on this theory, the DETAIL algorithm solves hierarchies of multi-way
constraints where all constraints are independent. For example, a hierarchy must
not contain the constraints strong © + y = 1 and weak z + y = 1.

2.2 Theory

By extending the theory described in [7], we formulated constraint hierarchies
that contain multiple solution types of constraints. A constraint hierarchy H is
a pair (V,C), where V is a set of variables that range over some domain D, and
C is a set of constraints on variables in V. Each constraint is associated with
a strength ¢ where 0 < ¢ < n. Strength 0 represents the strength of required

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

constraints, and the larger the number of a strength, the weaker it is. All con-
straints with an equal strength i are categorized into a solution type 7;. C is
divided into a set of lists {Cy, Cy,...,Cy}, where C; contains constraints with
strength ¢ in some arbitrary order.

Solutions to a constraint hierarchy are defined as a set of valuations. A val-
uation # is a function that maps variables in V to their values in D. An error
function e; returns a non-negative real by evaluating the error for 8 of a con-
straint ¢ of a solution type 7. The error e,(cfl) = 0 if and only if ¢ is exactly
satisfied by #. The function F;, returns the list of errors of a list of constraints
Ci = [e1,eay ..., k], Lee,

E-(Cif) = [er,(c10), er,(c2f), ... er (ex)] .

Fach element e, (c;0) can be weighted by a positive real w;. An error sequence
R(C#H) is the error of C except Cy:

R(CO) = [E,,(C10), Er,(C20), ..., Ex (CL0)] .

A combining function g., combines E. (C;0) into a value of a domain where
elements are comparable. Two combined errors ¢, (E;,(Cif)) and g, (E-,(Cip))
are compared by a reflexive and symmetric relation <>, _, and an irreflexive,
antisymmetric, and transitive relation <, . The function G combines an error
sequence R(CH):

G(R(C@)) = [9-, (ETl (019)), ng(ETQ (029))’ cee ng(ETn(Cng))] .

Two combined error sequences G(R(C#)) and G(R(C¢)) are compared by a
lexicographic ordering <g:

G(R(CO)) <a G(R(Ce)) = Tk € {1,2,...,n}.
Vi€ {12, k= 1} g (En(Ci0)) <4 g0 (En(Cig)) A
ng(ETk(Ckg)) <gre ng(ETk(CkQD)) :

We say that 6 is better than ¢ if and only if G(R(CH)) <g G(R(Cy)).
The set S of solutions to H is defined as follows:

Sp = {6 | Ve € Cy. er,(cl) =0}
S={p €Sy | Ve Sym(GR(CH)) <g G(R(Cp)))} .

The main difference from the original formulation in [7] is existence of solu-
tion types. In [7], all constraints in a constraint hierarchy are categorized into
some single solution type, and therefore, for each strength ¢, e;, and ¢,, are some
e and g respectively. Since errors of constraints with different strengths are never
compared directly, we can safely assign various solution types to each strength.

Two error functions are presented in [7]: Given a constraint ¢ and a valuation
@, the metric error function returns ¢’s metric, e.g. for the constraint = y, the
distance between x and y. Also, the predicate error function returns 0 if ¢ 1s
exactly satisfied for 8, and 1 otherwise.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

Also in [7], several combining functions and associated relations are provided.
Since 1t does not introduce multiple solution types in a constraint hierarchy, an
instance of < 1s determined by single instances of e and g. For an instance of
< called least-squares-better, given lists of errors v = [v1,va, ..., vg] obtained
with the metric error function, g(v) = Zle w;vi, <4 is < and <>, is = for
reals. For instances of < called locally-better, given v = [vy,va, ..., vg] and
u = [ug,us, ..., ul, g(v) = vand <, and <>, are defined as follows:

v<gu=Vivy <u A Jjov <y
v<>,u=Vioy =y .
Locally-predicate-better is the locally-better using the predicate error function,
and locally-metric-better 1s the one employing the metric error function.
In the rest of this paper, we refer to the solution type associated with least-
squares-better as 11,95 and constraints of 1,sp as least-squares-better constraints,

and correspondingly locally-predicate-better as 1, pg and locally-predicate-better
constraints.3

2.3 Solution Graphs

Local propagation cannot solve conventional solution graphs with cycles or con-
flicts. To cope with this problem, we propose a new definition of solution graphs.
Before presenting it, we define constraint graphs of constraint hierarchies.

Definition1 (Constraint graph). Given a constraint hierarchy I = (V, C),
a bipartite graph B = (V,C, F'), where V and C are sets of nodes and F' is a set
of edges, is a constraint graph of H if and only if

E={(v,e) €V x C | v is constrained by ¢} .
We say that v and ¢ are adjacent if and only if (v,¢) € E.

We define solution graphs using constraint cells to overcome the defects of
conventional solution graphs.

Definition 2 (Constraint cell). Let H = (V,C) be a constraint hierarchy,
and B = (V,C, F) a constraint graph of H. For X C V, define I" as follows:

N'X)={c|(v,e)e E AN veX} .
is a constraint cell in B if and only if:

)
=0, and |V,| =1, or
, Cp C C, the subgraph of B induced by V), and C), is connected, and

VX C V. |X| < D) NG|

? These names may sound strange because ‘better’ is associated with <g (not <y),
but we use them to avoid introducing new terminologies.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

We say that p is over-constrained if and only if |V, | < |Cpl.

Values of variables in a constraint cell are obtained by evaluating constraints in
the cell. Because of Definition 2, this is always possible for constraints that we
handle. Definition 2 is based on Hall’s theorem, known in graph theory, which
describes the condition on existence of perfect matchings of bipartite graphs.
Intuitively, Definition 2 means that given a constraint cell p = (V,,C}), the
value of each variable in V, can be determined by at least one constraint in Cj,.

Definition3 (Solution graph). Given a constraint graph B = (V,C, F) and
a set P of constraint cells in B, a quadruple Bs = (V,C, FE, P) is a solution
graph for B if and only if:

1. each variable in V' belongs to only one constraint cell in P,
2. each constraint in C' belongs to only one constraint cell in P, and
3. there are no cyclic dependencies among constraint cells in P.

For example, Fig. 4 shows a solution graph equivalent to the one in Fig. 1b,
where boxes with round corners illustrate constraint cells.

Fig.4. A solution graph with constraint cells

Constraint cells are created so that they contain cycles and conflicts. In ad-
dition, over-constrained cells are sometimes merged with other cells to produce
a ‘better’ solution graph, i.e. the corresponding valuation is better, because the
new cells may acquire more freedom to determine the values of their variables.
For example, consider a constraint hierarchy with the constraints «, 3, v, 6, €, (,
1, and 6. Let « be required ¢t = 0, 3 weak t = u, v weak v = 1, é strong t + v = w,
e weak w = z, (strong z+y = z, n required £+ 1 = y, and # medium z = 7, where
strong and medium constraints are locally-predicate-better, and weak constraints
are least-squares-better. Figure 5a shows a solution graph of this hierarchy. Satis-
fying constraints locally in these cells, the corresponding valuation @ is obtained
as{t— 0, u—0,v—1 w—1 o+ 3 y—4, 2z 7} and the combined er-

ror Sequence ls [gTLPB (ETLPB ([6’ C]@))’ gTLPB (ETLPB ([9]@))’ gTLSB (ETLSB ([6’ P)/’ 6]@))]
= [[0,0],[0],4]. By contrast, merging the over-constrained cell W and the cell V

* For readability, we often draw arrowheads in constraint cells although they are not
essential.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

into the new cell W', we obtain the solution graph in Fig. 5b,% and then, the cor-
responding valuation @is {t — 0, u+— 0, v =2, w—2 23, yr—=4, 2 +— T},
and the combined error sequence is [[0, 0], [0],2]. This indicates that @ is better
than ©.

equired T weak U

t=0 I=u
49,

equired weak
t=0 T t=u u

3 t
(b) Eﬁi"‘l St wi ey (X

(a) {k

Fig.5. Merging an over-constrained cell with another constraint cell

We define correct solution graphs using nternal strengths and walkabout
strengths of constraint cells so that the graphs can produce solutions to con-
straint hierarchies. Walkabout strengths were first introduced in the DeltaBlue
algorithm, but for our purpose, we extend its definition:

Definition4 (Internal strength). The internal strength of a constraint cell
p = (V,,C,) is (1) weakest if C, = 0, or (2) the weakest among strengths of
constraints in C),, otherwise.

Definition 5 (Walkabout strength). The walkabout strength of a constraint
cell p is the weakest among p’s internal strength and walkabout strengths of
constraint cells with variables adjacent to the constraints in p.

Definition 6 (Correct solution graph). A solution graph is correct if and
only if:

1. for each constraint cell with multiple constraints, the pair of the set of its
variables and the set of its non-weakest constraints does not constitute a
constraint cell, i.e. does not satisfy Definition 2, and

2. for each over-constrained cell, its internal strength is weaker than the walk-
about strengths of any other constraint cells with the variables adjacent to
the constraints in the over-constrained cell.

Intuitively, Condition 1 of Definition 6 makes constraint cells use the weakest
constraints to determine the values of their variables, and Condition 2 guarantees
that constraints in over-constrained cells cannot override constraints in other
cells even if they are merged.

® Note that constraint cells are not merged simply because they contain constraints
of similar solution types or constraints with equal strengths. For example, W' in
Fig. 5b contains multiple solution types of constraints with multiple strengths

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

2.4 Algorithm

It is desirable that sizes of constraint cells in correct solution graphs are mini-
mized since local propagation can be efficiently applied to such graphs. The DE-
TAIL algorithm creates such solution graphs incrementally when invoked with
the following five operations: adding a variable, removing a variable, adding a
constraint, removing a constraint, and updating a variable value. The former four
operations cause the corresponding solution graph to be modified, and the last
operation applies local propagation to the solution graph as described earlier.
We call the former planning and the latter execution.

The algorithm for adding or removing a variable 1s quite straightforward: to
add a variable, DETAIL only creates a new constraint cell with the variable, and
to remove a variable, it deletes the constraint cell with the variable after verifying
that the variable is not adjacent to any constraints. In the rest of this section,
we describe the algorithm for adding or removing a constraint to a hierarchy.

Adding a Constraint. Initially, there is a correct solution graph whose con-
straint cells are minimized. When a new constraint is added to this hierarchy,
one or more constraints with an equal or weaker strength may be ‘victimized,’
that is, their associated errors will be increased. In such a case, DETAIL re-
constructs the solution graph incrementally to keep it correct and its constraint
cells minimal by modifying the necessary set of cells.

DETAIL treats locally-predicate-better constraints specially by permitting
‘equal to’ as well as ‘weaker than’ in Condition 2 of Definition 6, because these
constraints can be ignored if they cannot be exactly satisfied, and resulting
solution graphs may be solved more efficiently.

Figure 6 shows the algorithm that adds a constraint con to a constraint
hierarchy, and Fig. 7 describes the algorithm to decompose a constraint cell at
lines 12 and 17 in Fig. 6. The former algorithm works as follows: First, it creates
a constraint cell with con at line 1. Second, it finds the strength of the ‘victim’
constraint at line 2. Next, it follows the path from con to the victim at lines 4-19,
reversing the dependency between the cells along the path. After this process,
con becomes active. Then, it eliminates cycles of constraint cells generated in
the previous process at line 20, and updates walkabout strengths correctly at
line 21. Finally, it merges over-constrained cells with others at line 23 so that
they can minimize the errors of their constraints.

Figure 8 shows an example of the execution of this algorithm. Initially, there
is a correct solution graph illustrated in Fig. 8a. When a constraint # 1s added
to the constraint hierarchy, this algorithm works as follows:

1. A constraint cell H with @ is created (Fig. 8b). The strength of the victim
is found to be weak.

2. After the variable z is removed from the cell G, it is added to H (Fig. 8c).

3. The variable z is deleted from the cell F| and is added to G (Fig. 8d). The
weak constraint € in £ is found to be the victim.

4. The constraint cells G and F' are merged because they form a cycle.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

1 ¢l «— a new cell with con;
wastr — the weakest of walkabout strengths of
cells with variables adjacent to con;
3 str — con’s strength;
4 while str is stronger than wastr do
5 nextcl — a cell with a variable adjacent to a constraint in ¢l and
with walkabout strength wastr;

6 var «— a variable in nextcl that connects to cl;
7 remove var from nextcl;
8 add var to cl;
9 if nextcl is empty then
10 str «— weakest;
11 else if nextcl’s internal strength is wastr then
12 ¢l — an over-constrained cell generated by decomposing nextcl;
13 str — cl’s internal strength;
14 else
15 bordercon — a constraint in nextcl and
adjacent to a variable in a cell with walkabout strength wastr;
16 remove bordercon from nextcl;
17 decompose nextcl;
18 cl — a new cell with bordercon;
19 str — cP’s internal strength; /* end of while */

20 merge cyclic cells dependent on con;
21 update walkabout strengths of cells dependent on con;
22 if wastr is not weakest and constraints with strength wastr are
not locally-predicate-better constraints then
23 merge cells that ¢l depends on and
that have the same walkabout strength as cl;

Fig. 6. Adding a constraint con to a constraint hierarchy.

for each variable var in ¢l do
remove var from cl;
create a cell with var;

for each constraint con stronger than wastr in ¢l do
remove con from cl;
var «— a variable initially in ¢l that forms a cell alone and

that con depends on;

reverse the dependency between con and var;

for each constraint con with strength wastr in ¢l do
remove con from cl;

10 if there is a variable initially in ¢/ that forms a cell alone and

S U W N

© o I

that con depends on then

11 var «— the variable found above;

12 reverse the dependency between con and var;
13 else

14 create a cell with con;

Fig.7. Decomposing a constraint cell ¢/ with walkabout strength wastr

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

5. Walkabout strengths are updated (Fig. 8¢).
6. Since F is over-constrained, it is joined with the constraint cells D and C,
which have the same walkabout strength weak as F (Fig. 8f).

required A weak B weak F

required weak fequired
D-OHT-o
EFOHOATPOIO)|

weak strong weak strong

(a) weak 5 weak p weak | weak (g (b) weak o weak p weak | weak G

required A weak B weak F

(C) weak 5 weak p weak | G H (d) weak 5 weak E G H

required A weak B medium required A weak B medium

(e) weak 5 weak p weak g medium H (f) weak E medium 5 H

Fig.8. Adding a constraint

It is sometimes necessary to decompose ‘large’ constraint cells that contain
multiple constraints. Figure 7 describes the algorithm that decomposes ‘large’
cells into ‘small’ ones. Basically, it matches variables with constraints, employing
a perfect matching algorithm for bipartite graphs. In addition, since the weakest
constraints sometimes need to remain unsatisfied, it later tries to match the
weakest constraints at lines 8-14. Definition 2 of constraint cells guarantees that
there are no undetermined variables after decomposing cells with one or more
constraints. Even if constraint cells that do not satisfy Condition 3 in Definition 3
or Condition 2 in Definition 6 are generated, they will be merged by the caller
algorithm in Fig. 6.

Removing a Constraint. Removing a constraint from a constraint hierarchy
may cause one or more constraints with an equal or weaker strength to decrease
their errors, because it or they may acquire more freedom to determine the value
of variables instead of the removed constraint. In the similar way to adding a
constraint, the algorithm reverses the dependency between the cell with such
constraints and the cell that has been contained the removed constraint.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

3 Implementation

Based on the algorithm presented in the previous section, we implemented the
DETAIL constraint solver in Objective-C. It consists of two layers, a solver
and subsolvers. A solver produces correct solution graphs, to which it applies
local propagation. Subsolvers obtain values of variables by solving constraint
systems locally in individual constraint cells. During local propagation, the solver
invokes appropriate subsolvers based on solution types of constraints in cells. For
example, if a cell contains only locally-predicate-better constraints, the solver
calls the subsolver for m,pg. This architecture enables us to introduce a new
solution type of constraints by implementing necessary subsolvers. For example,
if we employ locally-predicate-better and least-squares-better constraints, we
have to implement the subsolvers for pp, for m.gp, and for mpp and m.gp.°

We implemented three subsolvers: one that handles locally-predicate-better
constraints represented as linear equations or multi-way constraints, one that
treats least-squares-better linear-equation constraints, and one that generates
graph layouts based on the spring model [1].

4 Performance Measurements

Using the chain benchmark [5], we compared the performance of the DETAIL
constraint solver implemented in Objective-C with that of the DeltaBlue con-
straint solver implemented in C. Initially, the constraint hierarchy contains the
required constraints xyp = @1, £1 = %a,..., Tp_o = Tnp_1 and the constraint
weak stay(#g). The chain benchmark measures the planning time to add the
constraint strong edit(z,,—1) to the hierarchy, and also measures the execution
time to compute values of variables when the value of x,_; 1s changed through
edit(#,_1). Both of the planning and the execution are the worst cases where
the overall solution graph must be processed.

Table 1 shows the result:” while the planning time of DETAIL is almost four
times as long as that of DeltaBlue, the execution time is nearly twenty times as
long. The main handicaps of DETAIL are the complex data structure of con-
straint cells, and dynamic binding of methods in Objective-C.® We believe that
dynamic binding caused slowdown in performance because the source program
involves numerous message sendings with dynamic binding. If we re-implement
the DETAIL constraint solver in C++, its performance is expected to approach
that of DeltaBlue.

6 However, since the DETAIL algorithm tries to divide constraint hierarchies as much
as possible, the subsolver for m,pp and TLgp may never be invoked.

" Precisely speaking, the separation of planning and execution is slightly different from
the description presented in Sect. 2.4. In both DETAIL and DeltaBlue, the planning
time includes the time of topological sort for local propagation.

8 Objective-C does not support static binding like C++.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

Table 1. Results of the chain benchmark

n 1000 2000 3000 4000 5000
Planning (ms) DETAIL 283 617 933 1183 1817
DeltaBlue 67 166 250 350 434

Execution (ms) DETAIL 36.7 68.3 105.0 140.0 176.7
DeltaBlue 2.5 4.3 6.7 8.7 10.8

On NeXTstation TurboColor (33 MHz 68040)

5 Conclusions and Status

We proposed the DETAIL algorithm, which incrementally solves multiple solu-
tion types of constraints in a single constraint hierarchy by grouping together
cyclic or conflicting constraints into constraint cells. We implemented the DE-
TAIL constraint solver, which exhibited promising performance results.

Using this solver, we developed the IMAGE system, which generates GUIs

by generalizing multiple visual examples [3]. This system takes advantage of the
ability of DETAIL to handle hierarchies of simultaneous constraints. Also, we
are planning on applying DETAIL to our algorithm animation system based on
declarative specification [6].

References

1.

Kamada, T., Visualizing Abstract Objects and Relations, A Constraint-Based Ap-
proach. Singapore: World Scientific, 1989.

Maloney, J. H., A. Borning, and B. N. Freeman-Benson, “Constraint Technology
for User-Interface Construction in ThinglLab I1,” in Proc. of the ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications, Oct. 1989,
pp. 381-388.

Miyashita, K., S. Matsuoka, S. Takahashi, and A. Yonezawa, “Interactive Genera-
tion of Graphical User Interfaces by Multiple Visual Examples,” in Proc. of the ACM
Symposium on User Interface Software and Technology, Nov. 1994 (to appear).

. Myers, B. A, D. A. Giuse, R. B. Dannenberg, B. Vander Zanden, D. S. Kosbie,

E. Pervin, A. Mickish, and P. Marchal, “Garnet: Comprehensive Support for Graph-
ical, Highly Interactive User Interfaces,” IFEF Computer, vol. 23, no. 11, Nov. 1990,
pp. 71-85.

. Sannella, M., B. Freeman-Benson, J. Maloney, and A. Borning, “Multi-way versus

One-way Constraints in User Interfaces: Experience with the DeltaBlue Algorithm,”
Technical Report 92-07-05, Department of Computer Science and Engineering, Uni-
versity of Washington, July 1992.

. Takahashi, S., K. Miyashita, S. Matsuoka, and A. Yonezawa, “A Framework for

Constructing Animations via Declarative Mapping Rules,” in Proc. of the IEFFE
Symposium on Visual Languages, Oct. 1994 (to appear).

. Wilson, M. and A. Borning, “Hierarchical Constraint Logic Programming,” Techni-

cal Report 93-01-02a, Department of Computer Science and Engineering, University
of Washington, May 1993.

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

