
Locally Simultaneous Constraint Satisfaction

Hiroshi Hosobe��� Ken Miyashita�� Shin Takahashi��

Satoshi Matsuoka�� and Akinori Yonezawa�

� Department of Information Science� University of Tokyo
� Department of Mathematical Engineering� University of Tokyo

����� Hongo� Bunkyo�ku� Tokyo ���� Japan

Abstract� Local propagation is often used in graphical user interfaces to
solve constraint systems that describe structures and layouts of �gures�
However� algorithms based on local propagation cannot solve simultane�
ous constraint systems because local propagation must solve constraints
individually� We propose the 	DETAIL
 algorithm� which e�ciently solves
systems of constraints with strengths� even if they must be solved si�
multaneously� by 	dividing
 them as much as possible� In addition to
multi�way constraints� it handles various other types of constraints� for
example� constraints solved with the least squares method� Furthermore�
it uni�es the treatment of di�erent types of constraints in a single system�
We implemented a prototype constraint solver based on this algorithm�
and evaluated its performance�

� Introduction

Local propagation is an e�cient constraint satisfaction algorithm that takes ad�
vantage of potential locality of constraint systems� It is often used in graphical
user interfaces �GUIs� to solve constraint systems that describe structures and
layouts of �gures�

Recent constraint solvers based on local propagation handle multi�way con�

straints 	
�� A multi�way constraint can be solved for any one of its variables� For
example� the constraint x � y z is multi�way because it can be transformed
into x� y z� y � x� z� and z � x�y� Local propagation satis�es systems of
multi�way constraints by solving each constraint at most once in some order� For
example� consider a constraint system with the constraints v � w�x� w � y� and
x � y z� Figure �a shows a constraint graph representing this system� where
circles and squares represent variables and constraints respectively� This system
can be satis�ed by solving x� y z� w� y� and v � w� x in this order� This
case is illustrated by the correct solution graph in Fig� �b� where arrows from
constraints point to variables to which the constraints output values� A solution
graph is a constraint graph that dictates how each constraint will be solved� and
a correct solution graph satis�es the following two properties� ��� the value of
each variable must be determined by at most one constraint� that is� the graph
should have no con�icts� and ��� all the constraints must be partially ordered�
that is� the graph must have no cycles�

� E�mail detail�is�s�u�tokyo�ac�jp

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

�a�

w

x
v

z

v = w � x
w = y

x = y + z

y

�b�

w

x
v

z

v = w � x
w = y

x = y + z

y

Fig� �� �a� A constraint graph and �b� its correct solution graph

Multi�way constraints embody a problem that correct solution graphs are
not determined uniquely� Borning et al� proposed constraint hierarchies to cope
with this problem 	��� A constraint hierarchy is a system of constraints with
hierarchical strengths� If the system is over�constrained� it is solved so that there
are as many satis�ed strong constraints as possible� which allows programmers
to implicitly specify solution graphs� In Fig� �a� for example� the constraints
x � � and x � � con�ict� However� if x � � and x � � are associated with strong

and weak respectively� the constraint system is solved by satisfying only x � �
as shown in Fig� �b� DeltaBlue is the �rst proposed algorithm that e�ciently
solves hierarchies of multi�way constraints 	�� ��� It determines output variables
of constraints incrementally when a constraint is added or removed� and realizes
constraint satisfaction without spoiling the e�ciency of local propagation�

�a� x
x = 1 x = 3

�b� x

strong weak
x = 3x = 1

Fig� �� �a� A solution graph for an over�constrained system and �b� one for a constraint
hierarchy

Local propagation has a serious problem that constraint systems employed
in real applications often result in solution graphs with cycles or con�icts� For
example� consider a constraint system with the constraints a�b � l� �ab��� �
m� stay�l�� and edit�m�� This system represents a typical situation where the
midpoint of two points is moved with a mouse� but its solution graphs contain
cycles by necessity� e�g� as illustrated in Fig� �a� As another example� suppose a
constraint hierarchy with the constraints strong x � � and strong x � �� Even if
one wants to apply the least squares method to these constraints and to obtain
the solution x � �� the resulting solution graph contains a con�ict as shown
in Fig� �b� Generally� in constraint systems that result in solution graphs with
cycles or con�icts� constraints need to be solved simultaneously�

We propose the �DETAIL� algorithm� which e�ciently solves constraint hier�
archies� even if constraints must be solved simultaneously� by �dividing� them as

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

�a�

b

a

l

m
(a + b)/2 = m

stay

edit

a � b = l

�b� x

strong strong
x = 1 x = 3

Fig� �� �a� A solution graph with a cycle and �b� one with a con�ict

much as possible� This algorithm is e�cient enough to be applied to constraint�
based GUIs since it incrementally �nds parts of constraint systems that must be
solved simultaneously� In addition to multi�way constraints� it handles various
other kinds of constraints� for example� constraints solved with the least squares
method� Furthermore� it uni�es the treatment of di�erent types of constraints in
a single hierarchy� We implemented a prototype constraint solver based on this
algorithm� and evaluated its performance�

� Locally Simultaneous Constraint Satisfaction

In this section� we present an extended theory of constraint hierarchies and the
DETAIL algorithm�

��� Constraints

In our extended constraint hierarchy theory� constraints are categorized into
solution types� which are determined by how the constraints are solved� For
example� there is a solution type of constraints that will be ignored if they cannot
be solved exactly� as with the DeltaBlue algorithm�Also� there is another solution
type of constraints that must be solved even in such a case by minimizing their
errors with the least squares method�

All constraints with an equal strength must belong to a single solution type�
Intuitively� this requirement is necessary because it is di�cult to equally treat
constraints of di�erent solution types�

Based on this theory� the DETAIL algorithm solves hierarchies of multi�way
constraints where all constraints are independent� For example� a hierarchy must
not contain the constraints strong x y � � and weak x y � ��

��� Theory

By extending the theory described in 	��� we formulated constraint hierarchies
that contain multiple solution types of constraints� A constraint hierarchy H is
a pair �V�C�� where V is a set of variables that range over some domain D� and
C is a set of constraints on variables in V � Each constraint is associated with
a strength i where � � i � n� Strength � represents the strength of required

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

constraints� and the larger the number of a strength� the weaker it is� All con�
straints with an equal strength i are categorized into a solution type �i� C is
divided into a set of lists fC�� C�� � � � � Cng� where Ci contains constraints with
strength i in some arbitrary order�

Solutions to a constraint hierarchy are de�ned as a set of valuations� A val�
uation � is a function that maps variables in V to their values in D� An error
function e� returns a non�negative real by evaluating the error for � of a con�
straint c of a solution type � � The error e� �c�� � � if and only if c is exactly
satis�ed by �� The function E�i returns the list of errors of a list of constraints
Ci � 	c�� c�� � � � � ck�� i�e��

E�i �Ci�� � 	e�i �c���� e�i �c���� � � � � e�i�ck��� �

Each element e�i �ci�� can be weighted by a positive real wi� An error sequence
R�C�� is the error of C except C��

R�C�� � 	E���C���� E�� �C���� � � � � E�n�Cn��� �

A combining function g�i combines E�i�Ci�� into a value of a domain where
elements are comparable� Two combined errors g�i �E�i�Ci��� and g�i�E�i�Ci���
are compared by a re�exive and symmetric relation �	g�i

� and an irre�exive�
antisymmetric� and transitive relation �g�i

� The function G combines an error
sequence R�C���

G�R�C��� � 	g���E���C����� g���E�� �C����� � � � � g�n�E�n�Cn���� �

Two combined error sequences G�R�C��� and G�R�C��� are compared by a
lexicographic ordering �G�

G�R�C��� �G G�R�C��� � �k � f�� �� � � � � ng�

�i � f�� �� � � � � k� �g� g�i�E�i�Ci��� �	g�i
g�i �E�i�Ci��� 	

g�k�E�k �Ck��� �g�k
g�k�E�k �Ck��� �

We say that � is better than � if and only if G�R�C��� �G G�R�C����
The set S of solutions to H is de�ned as follows�

S� � f� j �c � C�� e�� �c�� � �g

S � f� � S� j �� � S��
�G�R�C��� �G G�R�C����g �

The main di�erence from the original formulation in 	�� is existence of solu�
tion types� In 	��� all constraints in a constraint hierarchy are categorized into
some single solution type� and therefore� for each strength i� e�i and g�i are some
e and g respectively� Since errors of constraints with di�erent strengths are never
compared directly� we can safely assign various solution types to each strength�

Two error functions are presented in 	��� Given a constraint c and a valuation
�� the metric error function returns c�s metric� e�g� for the constraint x � y� the
distance between x and y� Also� the predicate error function returns � if c is
exactly satis�ed for �� and � otherwise�

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

Also in 	��� several combining functions and associated relations are provided�
Since it does not introduce multiple solution types in a constraint hierarchy� an
instance of �G is determined by single instances of e and g� For an instance of
�G called least�squares�better� given lists of errors v � 	v�� v�� � � � � vk� obtained

with the metric error function� g�v� �
Pk

i��wiv
�

i � �g is � and �	g is � for
reals� For instances of �G called locally�better� given v � 	v�� v�� � � � � vk� and
u � 	u�� u�� � � � � uk�� g�v� � v and �g and �	g are de�ned as follows�

v �g u � �i� vi � ui 	 �j� vj � uj

v �	g u � �i� vi � ui �

Locally�predicate�better is the locally�better using the predicate error function�
and locally�metric�better is the one employing the metric error function�

In the rest of this paper� we refer to the solution type associated with least�
squares�better as �LSB and constraints of �LSB as least�squares�better constraints�
and correspondingly locally�predicate�better as �LPB and locally�predicate�better
constraints��

��� Solution Graphs

Local propagation cannot solve conventional solution graphs with cycles or con�
�icts� To cope with this problem� we propose a new de�nition of solution graphs�
Before presenting it� we de�ne constraint graphs of constraint hierarchies�

De�nition� �Constraint graph�� Given a constraint hierarchy H � �V�C��
a bipartite graph B � �V�C�E�� where V and C are sets of nodes and E is a set
of edges� is a constraint graph of H if and only if

E � f�v� c� � V � C j v is constrained by cg �

We say that v and c are adjacent if and only if �v� c� � E�

We de�ne solution graphs using constraint cells to overcome the defects of
conventional solution graphs�

De�nition� �Constraint cell�� Let H � �V�C� be a constraint hierarchy�
and B � �V�C�E� a constraint graph of H� For X � V � de�ne
 as follows�

 �X� � fc j �v� c� � E 	 v � Xg �

A pair p � �Vp� Cp� is a constraint cell in B if and only if�

�� Vp � V � Cp � �� and jVpj � �� or
�� Vp � V � Cp � C� the subgraph of B induced by Vp and Cp is connected� and

�X � Vp� jXj � j
 �X� Cpj �

� These names may sound strange because 	better
 is associated with �G �not �g��
but we use them to avoid introducing new terminologies�

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

We say that p is over�constrained if and only if jVpj � jCpj�

Values of variables in a constraint cell are obtained by evaluating constraints in
the cell� Because of De�nition �� this is always possible for constraints that we
handle� De�nition � is based on Hall�s theorem� known in graph theory� which
describes the condition on existence of perfect matchings of bipartite graphs�
Intuitively� De�nition � means that given a constraint cell p � �Vp� Cp�� the
value of each variable in Vp can be determined by at least one constraint in Cp�

De�nition� �Solution graph�� Given a constraint graph B � �V�C�E� and
a set P of constraint cells in B� a quadruple BS � �V�C�E� P � is a solution
graph for B if and only if�

�� each variable in V belongs to only one constraint cell in P �

�� each constraint in C belongs to only one constraint cell in P � and

�� there are no cyclic dependencies among constraint cells in P �

For example� Fig�
 shows a solution graph equivalent to the one in Fig� �b�
where boxes with round corners illustrate constraint cells��

w

x
v

z
x = y + z

w = y

v = w � x y

Fig� �� A solution graph with constraint cells

Constraint cells are created so that they contain cycles and con�icts� In ad�
dition� over�constrained cells are sometimes merged with other cells to produce
a �better� solution graph� i�e� the corresponding valuation is better� because the
new cells may acquire more freedom to determine the values of their variables�
For example� consider a constraint hierarchy with the constraints �� �� � �� �� ��
�� and �� Let � be required t � �� � weak t � u� weak v � �� � strong tv � w�
� weak w � x� � strong xy � z� � required x� � y� and � medium z � �� where
strong and medium constraints are locally�predicate�better� and weak constraints
are least�squares�better� Figure �a shows a solution graph of this hierarchy� Satis�
fying constraints locally in these cells� the corresponding valuation � is obtained
as ft �� �� u �� �� v �� �� w �� �� x �� �� y ��
� z �� �g� and the combined er�
ror sequence is 	g�LPB �E�LPB�	�� ������ g�LPB�E�LPB�	������ g�LSB�E�LSB �	�� � ������
� 		�� ��� 	���
�� By contrast� merging the over�constrained cell W and the cell V

� For readability� we often draw arrowheads in constraint cells although they are not
essential�

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

into the new cellW �� we obtain the solution graph in Fig� �b�� and then� the cor�
responding valuation � is ft �� �� u �� �� v �� �� w �� �� x �� �� y ��
� z �� �g�
and the combined error sequence is 		�� ��� 	������ This indicates that � is better
than ��

�a�

t� � u �

�

y

�xw�� v

t = 0

v = 1

t = u x + 1 = y

x + y = zw = xt + v = w

required weak required

strongweakweak strong

�

z

z = 7
medium

ZV

T U

W X �b�

t� � u �

�

y

�xw�� v

t = 0

v = 1

t = u x + 1 = y

x + y = zw = xt + v = w

required weak required

strongweakweak strong

�

z

z = 7
medium

Z

UT

W� X

Fig� 	� Merging an over�constrained cell with another constraint cell

We de�ne correct solution graphs using internal strengths and walkabout

strengths of constraint cells so that the graphs can produce solutions to con�
straint hierarchies� Walkabout strengths were �rst introduced in the DeltaBlue
algorithm� but for our purpose� we extend its de�nition�

De�nition� �Internal strength�� The internal strength of a constraint cell
p � �Vp� Cp� is ��� weakest if Cp � �� or ��� the weakest among strengths of
constraints in Cp� otherwise�

De�nition	 �Walkabout strength�� The walkabout strength of a constraint
cell p is the weakest among p�s internal strength and walkabout strengths of
constraint cells with variables adjacent to the constraints in p�

De�nition
 �Correct solution graph�� A solution graph is correct if and
only if�

�� for each constraint cell with multiple constraints� the pair of the set of its
variables and the set of its non�weakest constraints does not constitute a
constraint cell� i�e� does not satisfy De�nition �� and

�� for each over�constrained cell� its internal strength is weaker than the walk�
about strengths of any other constraint cells with the variables adjacent to
the constraints in the over�constrained cell�

Intuitively� Condition � of De�nition � makes constraint cells use the weakest
constraints to determine the values of their variables� and Condition � guarantees
that constraints in over�constrained cells cannot override constraints in other
cells even if they are merged�

� Note that constraint cells are not merged simply because they contain constraints
of similar solution types or constraints with equal strengths� For example� W � in
Fig� �b contains multiple solution types of constraints with multiple strengths

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

��� Algorithm

It is desirable that sizes of constraint cells in correct solution graphs are mini�
mized since local propagation can be e�ciently applied to such graphs� The DE�
TAIL algorithm creates such solution graphs incrementally when invoked with
the following �ve operations� adding a variable� removing a variable� adding a
constraint� removing a constraint� and updating a variable value� The former four
operations cause the corresponding solution graph to be modi�ed� and the last
operation applies local propagation to the solution graph as described earlier�
We call the former planning and the latter execution�

The algorithm for adding or removing a variable is quite straightforward� to
add a variable�DETAIL only creates a new constraint cell with the variable� and
to remove a variable� it deletes the constraint cell with the variable after verifying
that the variable is not adjacent to any constraints� In the rest of this section�
we describe the algorithm for adding or removing a constraint to a hierarchy�

Adding a Constraint� Initially� there is a correct solution graph whose con�
straint cells are minimized� When a new constraint is added to this hierarchy�
one or more constraints with an equal or weaker strength may be �victimized��
that is� their associated errors will be increased� In such a case� DETAIL re�
constructs the solution graph incrementally to keep it correct and its constraint
cells minimal by modifying the necessary set of cells�

DETAIL treats locally�predicate�better constraints specially by permitting
�equal to� as well as �weaker than� in Condition � of De�nition �� because these
constraints can be ignored if they cannot be exactly satis�ed� and resulting
solution graphs may be solved more e�ciently�

Figure � shows the algorithm that adds a constraint con to a constraint
hierarchy� and Fig� � describes the algorithm to decompose a constraint cell at
lines �� and �� in Fig� �� The former algorithm works as follows� First� it creates
a constraint cell with con at line �� Second� it �nds the strength of the �victim�
constraint at line �� Next� it follows the path from con to the victim at lines
����
reversing the dependency between the cells along the path� After this process�
con becomes active� Then� it eliminates cycles of constraint cells generated in
the previous process at line ��� and updates walkabout strengths correctly at
line ��� Finally� it merges over�constrained cells with others at line �� so that
they can minimize the errors of their constraints�

Figure � shows an example of the execution of this algorithm� Initially� there
is a correct solution graph illustrated in Fig� �a� When a constraint � is added
to the constraint hierarchy� this algorithm works as follows�

�� A constraint cell H with � is created �Fig� �b�� The strength of the victim
is found to be weak�

�� After the variable z is removed from the cell G� it is added to H �Fig� �c��
�� The variable x is deleted from the cell E� and is added to G �Fig� �d�� The

weak constraint � in E is found to be the victim�

� The constraint cells G and F are merged because they form a cycle�

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

� cl � a new cell with con�
� wastr � the weakest of walkabout strengths of

cells with variables adjacent to con�
� str � con
s strength�
� while str is stronger than wastr do
� nextcl � a cell with a variable adjacent to a constraint in cl and

with walkabout strength wastr�
� var � a variable in nextcl that connects to cl�
� remove var from nextcl�
� add var to cl�
� if nextcl is empty then
�� str � weakest�
�� else if nextcl
s internal strength is wastr then
�� cl � an over�constrained cell generated by decomposing nextcl�
�� str � cl
s internal strength�
�� else
�� bordercon � a constraint in nextcl and

adjacent to a variable in a cell with walkabout strength wastr�
�� remove bordercon from nextcl�
�� decompose nextcl�
�� cl � a new cell with bordercon�
�� str � cl
s internal strength� �� end of while ��
�� merge cyclic cells dependent on con�
�� update walkabout strengths of cells dependent on con�
�� if wastr is not weakest and constraints with strength wastr are

not locally�predicate�better constraints then
�� merge cells that cl depends on and

that have the same walkabout strength as cl�

Fig�
� Adding a constraint con to a constraint hierarchy�

� for each variable var in cl do
� remove var from cl�
� create a cell with var�
� for each constraint con stronger than wastr in cl do
� remove con from cl�
� var � a variable initially in cl that forms a cell alone and

that con depends on�
� reverse the dependency between con and var�
� for each constraint con with strength wastr in cl do
� remove con from cl�
�� if there is a variable initially in cl that forms a cell alone and

that con depends on then
�� var � the variable found above�
�� reverse the dependency between con and var�
�� else
�� create a cell with con�

Fig� �� Decomposing a constraint cell cl with walkabout strength wastr

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

�� Walkabout strengths are updated �Fig� �e��

�� Since E is over�constrained� it is joined with the constraint cells D and C�
which have the same walkabout strength weak as E �Fig� �f��

�a�

t� � u �

�

y

�xw�� v

required weak required

strongweakweak strong

z

A B F

GEDCweak weak weak weak

required weak weak

�b�

t� � u �

�

y

�xw�� v

required weak required

strongweakweak strong

�

z

medium

GEDC

A B F H

weak weak weak weak

required weak weak

�c�

t� � u �

�

y

�xw�� v

required weak required

strongweakweak strong

�

z

medium

GEDC

A B F

Hweak weak weak

required weak weak

�d�

t� � u �

�

y

�xw�� v

required weak required

strongweakweak strong

�

z

medium

GEDC

A B F

Hweak weak

required weak weak

�e�

t� � u �

�

y

�xw�� v

required weak required

strongweakweak strong

�

z

medium

GEDC

A B

Hweak weak weak medium

mediumrequired weak

�f�

t� � u �

�

y

�xw�� v

required weak required

strongweakweak strong

�

z

medium

GE

A B

Hweak

required weak medium

medium

Fig� �� Adding a constraint

It is sometimes necessary to decompose �large� constraint cells that contain
multiple constraints� Figure � describes the algorithm that decomposes �large�
cells into �small� ones� Basically� it matches variables with constraints� employing
a perfect matching algorithm for bipartite graphs� In addition� since the weakest
constraints sometimes need to remain unsatis�ed� it later tries to match the
weakest constraints at lines ���
� De�nition � of constraint cells guarantees that
there are no undetermined variables after decomposing cells with one or more
constraints� Even if constraint cells that do not satisfy Condition � in De�nition �
or Condition � in De�nition � are generated� they will be merged by the caller
algorithm in Fig� ��

Removing a Constraint� Removing a constraint from a constraint hierarchy
may cause one or more constraints with an equal or weaker strength to decrease
their errors� because it or they may acquire more freedom to determine the value
of variables instead of the removed constraint� In the similar way to adding a
constraint� the algorithm reverses the dependency between the cell with such
constraints and the cell that has been contained the removed constraint�

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

� Implementation

Based on the algorithm presented in the previous section� we implemented the
DETAIL constraint solver in Objective�C� It consists of two layers� a solver

and subsolvers� A solver produces correct solution graphs� to which it applies
local propagation� Subsolvers obtain values of variables by solving constraint
systems locally in individual constraint cells� During local propagation� the solver
invokes appropriate subsolvers based on solution types of constraints in cells� For
example� if a cell contains only locally�predicate�better constraints� the solver

calls the subsolver for �LPB� This architecture enables us to introduce a new
solution type of constraints by implementing necessary subsolvers� For example�
if we employ locally�predicate�better and least�squares�better constraints� we
have to implement the subsolvers for �LPB� for �LSB� and for �LPB and �LSB�

�

We implemented three subsolvers� one that handles locally�predicate�better
constraints represented as linear equations or multi�way constraints� one that
treats least�squares�better linear�equation constraints� and one that generates
graph layouts based on the spring model 	���

� Performance Measurements

Using the chain benchmark 	��� we compared the performance of the DETAIL
constraint solver implemented in Objective�C with that of the DeltaBlue con�
straint solver implemented in C� Initially� the constraint hierarchy contains the
required constraints x� � x�� x� � x�� � � � � xn�� � xn�� and the constraint
weak stay�x��� The chain benchmark measures the planning time to add the
constraint strong edit�xn��� to the hierarchy� and also measures the execution
time to compute values of variables when the value of xn�� is changed through
edit�xn���� Both of the planning and the execution are the worst cases where
the overall solution graph must be processed�

Table � shows the result�	 while the planning time of DETAIL is almost four
times as long as that of DeltaBlue� the execution time is nearly twenty times as
long� The main handicaps of DETAIL are the complex data structure of con�
straint cells� and dynamic binding of methods in Objective�C�
 We believe that
dynamic binding caused slowdown in performance because the source program
involves numerous message sendings with dynamic binding� If we re�implement
the DETAIL constraint solver in C� its performance is expected to approach
that of DeltaBlue�

� However� since the DETAIL algorithm tries to divide constraint hierarchies as much
as possible� the subsolver for �LPB and �LSB may never be invoked�

� Precisely speaking� the separation of planning and execution is slightly di�erent from
the description presented in Sect� ���� In both DETAIL and DeltaBlue� the planning
time includes the time of topological sort for local propagation�

� Objective�C does not support static binding like C���

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

Table �� Results of the chain benchmark

n ���� ���� ���� ���� ����
Planning �ms� DETAIL ��� ��� ��� ���� ����

DeltaBlue �� ��� ��� ��� ���
Execution �ms� DETAIL ���� ���� ����� ����� �����

DeltaBlue ��� ��� ��� ��� ����
On NeXTstation TurboColor ��� MHz ������

� Conclusions and Status

We proposed the DETAIL algorithm� which incrementally solves multiple solu�
tion types of constraints in a single constraint hierarchy by grouping together
cyclic or con�icting constraints into constraint cells� We implemented the DE�
TAIL constraint solver� which exhibited promising performance results�

Using this solver� we developed the IMAGE system� which generates GUIs
by generalizing multiple visual examples 	��� This system takes advantage of the
ability of DETAIL to handle hierarchies of simultaneous constraints� Also� we
are planning on applying DETAIL to our algorithm animation system based on
declarative speci�cation 	���

References

�� Kamada� T�� Visualizing Abstract Objects and Relations� A Constraint�Based Ap�

proach� Singapore World Scienti�c� �����
�� Maloney� J� H�� A� Borning� and B� N� Freeman�Benson� �Constraint Technology

for User�Interface Construction in ThingLab II�� in Proc� of the ACM Conference

on Object�Oriented Programming Systems� Languages� and Applications� Oct� �����
pp� ��������

�� Miyashita� K�� S� Matsuoka� S� Takahashi� and A� Yonezawa� �Interactive Genera�
tion of Graphical User Interfaces by Multiple Visual Examples�� in Proc� of the ACM
Symposium on User Interface Software and Technology� Nov� ���� �to appear��

�� Myers� B� A�� D� A� Giuse� R� B� Dannenberg� B� Vander Zanden� D� S� Kosbie�
E� Pervin� A� Mickish� and P� Marchal� �Garnet Comprehensive Support for Graph�
ical� Highly Interactive User Interfaces�� IEEE Computer� vol� ��� no� ��� Nov� �����
pp� ������

�� Sannella� M�� B� Freeman�Benson� J� Maloney� and A� Borning� �Multi�way versus
One�way Constraints in User Interfaces Experience with the DeltaBlue Algorithm��
Technical Report ��������� Department of Computer Science and Engineering� Uni�
versity of Washington� July �����

�� Takahashi� S�� K� Miyashita� S� Matsuoka� and A� Yonezawa� �A Framework for
Constructing Animations via Declarative Mapping Rules�� in Proc� of the IEEE

Symposium on Visual Languages� Oct� ���� �to appear��
�� Wilson� M� and A� Borning� �Hierarchical Constraint Logic Programming�� Techni�

cal Report ��������a� Department of Computer Science and Engineering� University
of Washington� May �����

© Springer-Verlag 1994
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-58601-6_89.

