
Binary Search-Based Methods for Solving
Constraint Hierarchies over Finite Domains

Hiroshi Hosobe
Faculty of Computer and Information Sciences

Hosei University
Tokyo, Japan

hosobe@acm.org

Ken Satoh
Principles of Informatics Research Division

National Institute of Informatics
Tokyo, Japan

ksatoh@nii.ac.jp

Abstract—Constraint programming is a powerful tool for
modeling and solving various problems. Especially, soft con-
straints are useful since they enable the treatment of over-
and under-constrained real-world problems by relaxing conflict-
ing constraints and introducing default constraints. Constraint
hierarchies provide a soft constraint framework that intro-
duces hierarchical preferences called strengths. In a constraint
hierarchy, constraints are associated with strengths such as
required, strong, medium, and weak, and a solution is obtained
to maximally satisfy stronger constraints in the sense of a given
solution criterion. In this paper, we propose three methods
based on binary search for solving constraint hierarchies over
finite domains by using a criterion called unsatisfied-count-better.
Our methods solve constraint hierarchies by encoding them into
ordinary constraint satisfaction problems and repeatedly solving
the encoded problems with an external solver. We also present the
implementations of our methods and the results of the experiment
that we conducted to evaluate them.

Index Terms—constraint programming, constraint solver, soft
constraint, constraint hierarchy

I. INTRODUCTION

Constraint programming (CP) is a paradigm of program-
ming that allows the specification of a problem with con-
straints that express declarative relationships among variables.
The technologies of CP derive from various fields including
programming languages, artificial intelligence, databases, and
operations research, and its applications range over various
problems such as scheduling, planning, transportation, soft-
ware design, network design, and bioinformatics [21].

A characteristic of CP is that it separates programming into
modeling and solving. While the modeling of a problem is
declaratively done with constraints, the constraints by them-
selves do not express how to solve the problem. Instead, the
solving of the problem is automatically performed by software
called a constraint solver. Therefore, programmers can devote
themselves to modeling problems without the need to program
how to solve the problems.

To realize this characteristic of CP, various frameworks of
modeling and solving with constraints have been proposed.
Constraint satisfaction problems (CSPs) have been widely used
as the framework of modeling with constraints, and also there
have been many studies on techniques for solving CSPs such
as constraint propagation [8], [25]. However, such classical
CSPs may easily become under- or over-constrained, causing

many solutions or no solutions. To avoid such undesirable sit-
uations, programmers need to specify necessary and sufficient
sets of constraints, which imposes extra burdens.

To solve this problem, soft constraints [18] have been
proposed. While constraints in classical CSPs must always
be satisfied, soft constraints are satisfied as much as possible.
Therefore, even if there are conflicts among soft constraints,
solutions can be obtained by relaxing them. Also, if constraints
are insufficient, solutions can be reduced by introducing de-
fault constraints. Important instances of such soft CSPs are the
maximum CSP (MaxCSP) and the weighted CSP (WCSP).

Constraint hierarchies [5] provide a soft constraint frame-
work that introduces hierarchical preferences to further facil-
itate the modeling of problems with constraints. The prefer-
ences of constraints are called strengths and are often symbol-
ically expressed as, e.g., required, strong, medium, and weak.
In a constraint hierarchy, strong constraints are more respected
than weaker ones in determining solutions. While weights
that are sometimes used in other soft constraint frameworks
are relative preferences, strengths in constraint hierarchies
are absolute preferences in the sense that strong constraints
are always more important than weaker ones. This property
reduces the need to make detailed adjustments of strengths,
making strengths easier-to-use than weights. In particular, the
solution criterion called unsatisfied-count-better (UCB), which
tries to satisfy larger numbers of stronger constraints, is useful
because it can be regarded as generalizations of the MaxCSP
and the WCSP.

In this paper, we propose three methods for solving con-
straint hierarchies over finite domains by using the UCB
criterion. Our methods solve constraint hierarchies by en-
coding them into CSPs and repeatedly solving the encoded
problems with an external solver. Although this encoding itself
is basically similar to that of Hosobe and Satoh’s HillClimbing
method [14], our new methods are different in that all of
them introduce binary search to improve the efficiency of
optimization. Specifically, we propose the following three
methods by introducing binary search in different ways:

• The Weighting method transforms a constraint hierarchy
into a weighted CSP and optimizes its objective function;

• The Lexicographic method directly embeds the binary
search-based optimization in the HillClimbing method;

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



• The LevelWise method successively performs optimiza-
tion from the strongest to the weakest level of a constraint
hierarchy.

We present the implementations of our methods and the results
of the experiment that we conducted to evaluate our methods.
The results show that Lexicographic and LevelWise are more
efficient than Weighting and HillClimbing for larger constraint
hierarchies.

The rest of this paper is organized as follows. Section II
presents previous research related to our work, and Section III
briefly explains important preliminaries. Section IV provides
the three methods that we propose in this paper. Section V
presents the implementations of the proposed methods, and
Section VI shows the experiment that we conducted to evaluate
them. Section VII discusses our method, and finally Sec-
tion VIII gives conclusions and future work.

II. RELATED WORK

Modelling and solving soft constraints have been studied
mainly in the context of soft CSPs [18]. Especially, specific
instances of soft CSPs called the maximal CSP (MaxCSP)
and the weighted CSP (WCSP) have been widely studied. In
a MaxCSP, a solution is obtained by maximizing the number
of satisfied constraints. In a WCSP, constraints are associated
with weights, and a solution is obtained by maximizing the
weighted count of satisfied constraints. Another framework
closely related to soft CSPs is the constraint optimization
problem (COP) [18]. A COP is represented as the pair of
a classical CSP and an explicit objective function, unlike soft
CSPs whose objective functions are implicitly constructed by
the underlying frameworks. There has been much research on
solving soft CSPs and COPs including consistency and search
techniques.

Constraint hierarchies [5] have long been studied. Most
of early research treated dataflow constraints by using a
graph-based approach called local propagation [7]. However,
algorithms based on local propagation were limited in their
application areas because they were insufficient in processing
simultaneous constraints and inequality constraints.

Algorithms for solving constraint hierarchies with linear
constraints over real domains [2], [10], [16], [17] appropriately
process simultaneous constraints and inequality constraints.
Especially, Cassowary [2] is widely used as the internal solver
of Apple Auto Layout [1]. Also, approximate algorithms [11],
[15] have been proposed to solve constraint hierarchies with
nonlinear constraints over real domains.

There has been research on the use of external solvers to
solve constraint hierarchies. An example is the algorithm [12]
that solves constraint hierarchies with nonlinear constraints
over real domains by using the Z3 solver [4], [6]. This method
is especially closely related to our work since both internally
use binary search for optimization. However, it is focused
on real domains and is not directly applicable to constraint
hierarchies over finite domains that we tackle in this paper.

Although there have not been many studies on solving con-
straint hierarchies over finite domains, notable previous work

was done by Bistarelli et al. [3]. They proposed consistency
techniques for constraint hierarchies over finite domains. The
techniques allowed the reduction of constraint hierarchies to
make them more efficiently solvable. They also developed a
branch-and-bound search algorithm for solving the reduced
constraint hierarchies. Although their work and ours share the
same goal of solving constraint hierarchies over finite domains,
the approaches are completely different. Especially, it should
be noted that our work is more convenient since our proposed
methods can be easily implemented by using a state-of-the-
art external CSP solver. Also, it should be noted that the
experiments presented in their paper [3] were limited to small
randomly generated problems with at most 10 variables.

III. PRELIMINARIES

This section briefly describes important preliminaries to our
work, namely, constraint hierarchies, how to encode constraint
hierarchies into classical CSPs, the HillClimbing method for
solving constraint hierarchies, and optimization based on bi-
nary search.

A. Constraint Hierarchies

In constraint hierarchies [5], constraints are associated with
hierarchical preferences called strengths. A constraint hierar-
chy consists of a finite number of levels. The top level holds
required (or hard) constraints that must always be satisfied,
and lower levels contain preferential (or soft) constraints that
can be relaxed if necessary. Strengths of constraints are often
symbolically expressed as, e.g., required, strong, medium, and
weak.

The solution set of a constraint hierarchy is determined by
the optimization of potential solutions. For this purpose, a
relation called a comparator is used to judge which of two
potential solutions is better than the other. What solution set
is obtained depends on the used comparator. Various concrete
comparators have been proposed, and are roughly classified
into global and local comparators. In our work, we use a
global comparator called unsatisfied-count-better (UCB) that
evaluates a potential solution in such a way that it should
satisfy more constraints in upper levels.

In the following, we represent a strength as an integer
between 0 and a certain positive integer l. More specifically,
strength 0 corresponds to required constraints, and 1 and larger
integers correspond to preferential, weaker constraints. We
represent a constraint hierarchy as H , regard level k of H
(which contains constraints with strength k) as consisting of
mk constraints, and let ck,i be the i-th constraint of level k
of H . We use x = (x1, x2, . . . , xn) to denote all the variables
that appear in H .

B. Encoding Constraint Hierarchies

Hosobe and Satoh’s HillClimbing method [14] for solving
constraint hierarchies over finite domains first encodes a given

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



constraint hierarchy H into the following classical CSP:

encode(H) ≡

(
m0∧
i=1

c0,i

)
∧(

l∧
k=1

mk∧
i=1

(sk,i ∈ {0, 1} ∧ (sk,i = 1→ ck,i))

)
,

where each sk,i is a variable called a selector variable that
takes either 0 or 1. Intuitively, encode(H) indicates that
ck,i with k ≥ 1 must be satisfied when sk,i is 1. Solving
encode(H) with various values of selector variables yields
various potential solutions to H .

In the case of the UCB comparator, it is convenient to
introduce the notion of the degree of satisfaction (DoS)
of a potential solution to H . Given a potential solu-
tion to H characterized as the selector variables s =
(s1,1, . . . , s1,m1

, . . . , sl,1, . . . , sl,ml
), the DoS δ(s) of this

potential solution is defined as follows:

δ(s) =

(
m1∑
i=1

s1,i,

m2∑
i=1

s2,i, . . . ,

ml∑
i=1

sl,i

)
.

Intuitively, the DoS of a potential solution indicates how many
constraints are satisfied in each preferential level. The UCB
comparator better evaluates a DoS that is larger in the sense
of the lexicographic order.

If a solver capable of treating constraints over finite domains
and optimizing such a sequence of variable sums in the lexico-
graphic order is available, solving a constraint hierarchy with
the UCB comparator can be performed in a straightforward
way. An example of such a solver is Z3 [4], [6] for satisfiability
modulo theories (SMT). Especially, its ability to perform
lexicographic multi-objective optimization enables the solving
of H with the UCB comparator by optimizing δ(s) subject to
encode(H). In Section VI, we evaluate our methods by using
Z3 as a baseline.

C. The HillClimbing Method

The HillClimbing method [14] solves an encoded constraint
hierarchy by performing optimization in a hill-climbing man-
ner. The original method obtained all solutions to a constraint
hierarchy for its use in constraint logic programming with con-
straint hierarchies (which is known as hierarchical constraint
logic programming [29]). Also, because of its simplicity, it
is easily modifiable to global comparators other than UCB
and local comparators. However, in this paper, we restrict our
attention to obtaining a single solution with UCB.

The HillClimbing method iteratively searches for a better
potential solution according to the UCB comparator. During
the search, it finds a single potential solution that is better than
the best potential solution found thus far, and continues the
search while there is such a potential solution. Since the UCB
comparator is based on whether the constraints are satisfied,
this iteration finally reaches an upper bound that is a solution
to the constraint hierarchy.

Algorithm 1 shows the algorithm of the HillClimbing
method. First, at line 2, it encodes a given constraint hierarchy

Algorithm 1: The HillClimbing method [14].
Data: A constraint hierarchy H
Result: A UCB solution v to H

1 begin
2 P ← encode(H);
3 (v,u)← findSingleSolution(P );
4 if there exists no such (v,u) then
5 return None; // Unsatisfiable required

constraints
6 end
7 while true do
8 (v′,u′)← findSingleSolution(P ∧

(δ(s) >lex δ(u)));
9 if there exists such (v′,u′) then

10 (v,u)← (v′,u′);
11 else
12 return v; // Solution found
13 end
14 end
15 end

H into a classical CSP P . At line 3, it solves P by using an
external CSP solver and finds a single solution (v,u), where
v holds the values of the variables x appearing in H , and u
holds the values of the selector variables s introduced in P .
At lines 4 to 6, it checks whether the required constraints in
H are satisfiable, and it terminates if they are unsatisfiable.
At lines 7 to 14, it performs the optimization. At line 8, it
tries to find a potential solution that is better than the current
best one. For this purpose, it solves the conjunction of P
and δ(s) >lex δ(u), where >lex indicates the “greater than”
relation for the lexicographic order. It should be noted that s is
the vector of the selector variables (i.e., not yet uninstantiated)
while u is the vector of the values of the selector variables
for the current best (i.e., already instantiated). If there is such
a better potential solution, it updates the current best at line
10. Otherwise, it returns the current best at line 12.

D. Binary Search-Based Optimization

Binary search is sometimes used to solve optimization
problems. Especially, it is used for maximal satisfiability
(MaxSAT) problems, where satisfiability (SAT) problems are
relaxed in such a way that satisfied clauses should be maxi-
mized [9]. More specifically, such a method considers a SAT
problem, in which the number of the satisfied clauses is
encoded as a logical adder, and its range also is encoded in the
way of combinatorial circuits. Then it maximizes the number
of the satisfied clauses by successively updating the upper
and lower bounds by binary search. The SAT-based constraint
solver Scarab, which we use as an external solver for our
proposed methods, is able to solve optimization problems by
using binary search in this way [23].

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



IV. PROPOSED METHODS

This section proposes three methods called Weighting,
Lexicographic, and LevelWise for solving constraint hierar-
chies over finite domains. These methods can be regarded
as modifying the HillClimbing method described in Subsec-
tion III-C by introducing the binary search-based optimization
described in Subsection III-D.

A. The Weighting Method

The Weighting method transforms a constraint hierarchy
into a WCSP and optimizes its objective function by binary
search. For this purpose, it first encodes a given constraint
hierarchy H into encode(H), which is a classical CSP. It treats
the UCB comparator by introducing the following objective
function ϕ(s) of the selector variables:

ϕ(s) =

l∑
k=1

(
wk

mk∑
i=1

sk,i

)
,

where each wk is the weight for constraints with strength k
defined as follows:

wk =

l∏
k′=k+1

(mk′ + 1).

It is known that determining weights wk as such sufficiently
large values guarantees that strong constraints should always
be more respected than weaker ones [19]. The lower bound of
ϕ(s) is 0 (i.e., all the preferential constraints are unsatisfied),
and the upper bound is (

∏l
k=1(mk + 1)) − 1 (i.e., all the

preferential constraints are satisfied). Therefore, performing
binary search with these lower and upper bounds as the starting
point enables the maximization of ϕ(s) subject to encode(H),
which obtains a solution to H .

Algorithm 2 shows the algorithm of the Weighting method.
Lines 2 to 6 are the same as those for the HillClimbing method.
At lines 7 and 8, it sets the current lower and upper bounds
blow and bup to the initial values. At lines 9 to 18, it performs
optimization based on binary search. At line 10, it computes
the midpoint b of the lower and upper bounds. At line 11, it
tries to find a potential solution that is better than or equal to
the one corresponding to b. For this purpose, it solves the
conjunction of P and ϕ(s) ≥ b. If there is such a better
potential solution, it updates the current best at line 13 and
the lower bound at line 14. Otherwise, it updates the upper
bound at line 16. Finally, after the binary search, it returns the
solution at line 19.

B. The Lexicographic Method

The Lexicographic method directly embeds the binary
search-based optimization in the HillClimbing method. While
HillClimbing successively improved the DoS of the current
best potential solution, the Lexicographic method performs
binary search according to the satisfiability of the conjunction
of encode(H) and δ(x) ≥lex dmid (where ≥lex indicates the
lexicographic “greater than or equal to” relation) by using the
midpoint dmid of the current lower and upper bounds of DoS.

Algorithm 2: The Weighting method.
Data: A constraint hierarchy H
Result: A UCB solution v to H

1 begin
2 P ← encode(H);
3 (v,u)← findSingleSolution(P );
4 if there exists no such (v,u) then
5 return None; // Unsatisfiable required

constraints
6 end
7 blow ← 0;
8 bup ← (

∏l
k=1(mk + 1))− 1;

9 while blow < bup do // Perform binary search
10 b← ⌈(blow + bup)/2⌉;
11 (v′,u′)← findSingleSolution(P ∧ (ϕ(s) ≥ b));
12 if there exists such (v′,u′) then
13 (v,u)← (v′,u′);
14 blow ← ϕ(u);
15 else
16 bup ← b− 1;
17 end
18 end
19 return v; // Solution found
20 end

The initial lower and upper bounds are (0, 0, . . . , 0) (i.e., all
the constraints are unsatisfied) and (m1,m2, . . . ,mk) (i.e., all
the constraints are satisfied) respectively.

Given the current lower and upper bounds dlb =
(dlb1 , dlb2 , . . . , dlbl ) and dub = (dub1 , dub2 , . . . , dubl ), their mid-
point dmid = (dmid

1 , dmid
2 , . . . , dmid

l ) is defined as follows:

dmid = uncomb (⌈(comb(dlb) + comb(dub))/2⌉) ,

where comb is the function defined as

comb(d) =
l∑

k=1

((
l∏

k′=k+1

(mk′ + 1)

)
dk

)
,

and uncomb is the inverse function of comb, where d =
(d1, d2, . . . , dl).

Algorithm 3 shows the algorithm of the Lexicographic
method. It is an intermediate between the HillClimbing and
Weighting methods. As a binary search algorithm, it is similar
to the Weighting method. However, at line 11, it tries to solve
the conjunction of P and δ(s) ≥lex uncomb(b), which is more
similar to the HillClimbing method because both use relations
based on the lexicographic order.

C. The LevelWise Method

The LevelWise method successively performs optimization
from the strongest to the weakest level. It can be regarded as
repeatedly transforming a constraint hierarchy into MaxCSPs
from the strongest to the weakest level. Such an approach
to solving constraint hierarchies is known as the refining
method [13]. More specifically, at the step of optimizing level

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



Algorithm 3: The Lexicographic method.
Data: A constraint hierarchy H
Result: A UCB solution v to H

1 begin
2 P ← encode(H);
3 (v,u)← findSingleSolution(P );
4 if there exists no such (v,u) then
5 return None; // Unsatisfiable required

constraints
6 end
7 blow ← 0;
8 bup ← comb((m1,m2, . . . ,mk));
9 while blow < bup do // Perform binary search

10 b← ⌈(blow + bup)/2⌉;
11 (v′,u′)← findSingleSolution(P ∧

(δ(s) ≥lex uncomb(b)));
12 if there exists such (v′,u′) then
13 (v,u)← (v′,u′);
14 blow ← comb(δ(u));
15 else
16 bup ← b− 1;
17 end
18 end
19 return v; // Solution found
20 end

k, the LevelWise method treats the required constraints and the
preferential constraints with strengths 1 to k, and maximizes
the satisfied constraints with strength k while keeping the same
numbers of the satisfied constraints with strengths 1 to k − 1
as it was able to satisfy until the previous step.

Algorithm 4 shows the algorithm of the LevelWise method.
At lines 2 to 6, it tries to solve only the required constraints,
and terminates if there is no solution. At lines 7 to 22, it
successively processes each level k from 1 to l. At line 8,
it additionally encodes constraints with strength k. At lines
9 to 20, it maximizes the satisfied constraints by performing
binary search. At line 21, it adds the constraint that keeps the
number of the satisfied constraints with strength k. Finally,
after processing all the levels, it returns the solution at line 23.

V. IMPLEMENTATION

Using the methods proposed in Section IV, we implemented
a solver of constraint hierarchies over finite domains in the
Scala language. In addition to the implementations of the three
proposed methods, this solver includes an implementation of
the HillClimbing method (described in Subsection III-C) and
an implementation using the lexicographic multi-objective op-
timization of Z3 (described in Subsection III-B). We adopted a
SAT-based CP system called Scarab [23] as the external solver

Algorithm 4: The LevelWise method
Data: A constraint hierarchy H
Result: A UCB solution v to H

1 begin
2 P ←

∧m0

i=1 c0,i;
3 v ← findSingleSolution(P );
4 if there exists no such v then
5 return None; // Unsatisfiable required

constraints
6 end
7 for k = 1 to l do // Process each level
8 P ← P ∧ (

∧mk

i=1(sk,i ∈ {0, 1} ∧
(sk,i = 1→ ck,i)));

9 blow ← 0;
10 bup ← mk;
11 while blow < bup do // Perform binary search
12 b← ⌈(blow + bup)/2⌉;
13 (v′,u′)← findSingleSolution(P ∧

(
∑mk

i=1 sk,i ≥ b));
14 if there exists such (v′,u′) then
15 (v,u)← (v′,u′);
16 blow ←

∑mk

i=1 uk,i;
17 else
18 bup ← b− 1;
19 end
20 end
21 P ← P ∧ (

∑mk

i=1 sk,i = blow);
22 end
23 return v; // Solution found
24 end

of the three proposed methods and the HillClimbing method.1

Scarab uses SAT4J as its standard external SAT solver.
To encode constraints into SAT problems, Scarab provides
three methods called order encoding [24], log encoding (see,
e.g., [28]), and pseudo-Boolean encoding, and we used order
and log encoding. Our solver supports linear constraints over
finite integer domains, Boolean constraints with 0/1-valued
variables, logical combinations of such linear and Boolean
constraints, and all-different constraints. The implementation
of our solver currently consists of approximately 2000 lines
of code.

VI. EXPERIMENT

This section presents the experiment that we conducted to
evaluate the proposed methods.

1Although we attempted to use the CP-SAT solver of OR-Tools [20] as
an external solver, we found that it was not sufficient for our purpose.
The main problem is that the CP-SAT solver is not general enough to
encode a constraint hierarchy in the way described in Subsection III-B;
it does not allow expressing selector variables as shown in encode(H).
Alternatively, it can express selector variables by using a special method called
onlyEnforceIf, but the method is limited to linear constraints. It should
be noted that any of the problems used in our experiment in Section VI could
not be treated with only such linear constraints.

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



A. Procedure

In this experiment, we used two kinds of problems that we
created by introducing constraint hierarchies into the following
two kinds of problems:

• Pandiagonal Latin squares (PLSs);
• Existing benchmark problems from the MAX-CSP 2008

Competition, which was held as part of the Third In-
ternational CSP Solver Competition [27] at the CP2008
conference.

A PLS is the problem of placing distinct numbers of 1 to
n on each row, column, and generalized diagonal of n × n
cells. It differs from an ordinary Latin square in that it
generalizes diagonals of cells. An n×n PLS is modeled with
n×n variables and 4n all-different constraints. If we consider
2 ≤ n ≤ 13, n×n PLSs are satisfiable for n = 5, 7, 11, 13 and
are unsatisfiable otherwise. In this experiment, we consider the
problems of solving PLSs with constraint hierarchies, which
we call hierarchical PLSs. More specifically, constraints for
rows, columns, generalized diagonals falling to the right, and
generalized diagonals rising to the right are assigned strengths
of 1, 2, 3, and 4 respectively (there are no required constraints).
With this modification, PLSs that are unsatisfiable in the
classical cases get to have solutions. Fig. 1 shows solutions
of hierarchical PLSs. In Fig. 1(a), distinct numbers are placed
on each direction since the 5× 5 classical PLS is satisfiable.
In Fig. 1(b), distinct numbers are placed on each row and
column, only 4 generalized diagonals falling to the right have
distinct numbers, and no generalized diagonals rising to the
right have distinct numbers since the optimal DoS of the 6×6
hierarchical PLS is (6, 6, 4, 0).

(a)

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5 (b)

3 1 4 6 5 2
6 5 2 4 3 1
4 2 6 3 1 5
2 6 5 1 4 3
1 4 3 5 2 6
5 3 1 2 6 4

Fig. 1. Solutions to (a) the 5× 5 and (b) the 6× 6 hierarchical PLS.

We selected 27 benchmark problems from the MAX-CSP
2008 Competition. The problems consist of n-ary intensional
constraints, and fall in three categories, namely, chessboard
coloration, Schur’s Lemma, and radar surveillance. All the
problems are unsatisfiable as classical CSPs, and were solved
as MaxCSPs within the time limit of one hour by at least
one solver in the competition. The problems consist of linear
constraints over finite integer domains, Boolean constraints
with 0/1-valued variables, and their logical combinations. In
our experiment, we introduce constraint hierarchies into these
problems, which we call the hierarchical benchmark problems.
Specifically, for each problem, we associate the first, the
second, the third, and the fourth quarter of the constraints
with strengths 1, 2, 3, and 4 respectively.

We compared nine instances of our solver for the hier-
archical PLSs and five instances for the hierarchical bench-

mark problems. We included Z3 (using lexicographic multi-
objective optimization) and HillClimbing as baselines. For
the hierarchical PLSs, we used both order and log encoding
for HillClimbing, Weighting, Lexicographic, and LevelWise.
For the hierarchical benchmark problems, we used only log
encoding since our preliminary experiment had showed that
order encoding was not efficient for these problems in terms of
memory. We measured the execution times that these instances
of our solver needed to solve the hierarchical PLSs with
2 ≤ n ≤ 13 and the hierarchical benchmark problems. We
assigned 4 GB of memory to the Java virtual machine, and
limited the execution time to the maximum of 20 minutes.

We used a computer with an M1 Ultra processor running
macOS 13.6. The external solvers and programming languages
processors that we used were Z3 4.12.2, Scarab 1.9.6 (in-
cluding SAT4J), Scala 2.12.18, and Eclipse Temurin JDK
17.0.8.1+1. It should be noted that Z3 was written in C++
whereas SAT4J and Scarab were written in Java and Scala
respectively. In general, as the running time of Z3 becomes
longer, the overhead of invoking Z3 from the Java virtual
machine becomes more negligible. In these senses, Z3 as an
external solver has advantages over Scarab.

B. Results

Tables I and II show the experimental results of the hier-
archical PLSs and the hierarchical benchmark problems re-
spectively. In these tables, “M.O.” indicates that the execution
was abnormally terminated due to OutOfMemoryError,
and “T.O.” indicates that the execution was not completed
within the time limit. The consistent DoS was finally obtained
in all the cases that the executions were normally completed.
Especially, all the constraints were satisfied for the hierarchical
PLSs with n = 5, 7, 11, 13, whose corresponding classical
PLSs are satisfiable.

For the small hierarchical PLSs with n = 2, 3, 5 and the one
with n = 4, the solver using Z3 and the HillClimbing method
using order encoding respectively computed solutions for the
shortest times. However, for the larger hierarchical PLSs with
n ≥ 6, either the Lexicographic or the LevelWise method using
order encoding computed solutions for the shortest times.
The Weighting method using order encoding not only needed
long execution times but also caused out of memory for the
hierarchical PLSs with n ≥ 6. The Weighting, Lexicographic,
and LevelWise methods using log encoding did not terminate
within the time limit for the hierarchical PLSs with n ≥ 8.

For most of the hierarchical benchmark problems, the solver
using Z3 computed solutions for the shortest times. However,
it should be emphasized again that Z3 was written in C++
whereas Scarab and SAT4J were written in Scala and Java
respectively. Therefore, we consider that our methods were
sufficiently faster than Z3 for the problems of chessboard
coloration and Schur’s Lemma, and also that our methods were
comparable with Z3 for radar surveillance. Among our meth-
ods, LevelWise was always faster than Lexicographic for chess-
board coloration and radar surveillance, but Lexicographic was
faster than LevelWise for two problems of Schur’s Lemma.

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



TABLE I
EXECUTION TIMES IN MILLISECONDS NEEDED TO SOLVE THE n× n HIERARCHICAL PLSS.

Order encoding Log encoding
n Optimal Z3 Hill- Weight- Lexico- Level- Hill- Weight- Lexico- Level-

DoS Climbing ing graphic Wise Climbing ing graphic Wise
2 (2,2,0,0) 37 104 140 125 108 127 139 152 121
3 (3,3,3,0) 57 130 223 146 138 181 176 187 166
4 (4,4,2,2) 177 165 2243 194 169 384 307 360 261
5 (5,5,5,5) 153 202 5562 181 177 426 245 317 256
6 (6,6,4,0) T.O. 2386 M.O. 2194 4695 29833 46902 30568 44328
7 (7,7,7,7) 5857 319 M.O. 250 242 8316 3260 3835 2527
8 (8,8,6,6) T.O. 2493 M.O. 1681 1461 68299 T.O. T.O. T.O.
9 - T.O. T.O. M.O. T.O. T.O. T.O. T.O. T.O. T.O.

10 (10,10,8,8) T.O. 828585 M.O. 106225 92755 T.O. T.O. T.O. T.O.
11 (11,11,11,11) T.O. T.O. M.O. 3436 49852 T.O. T.O. T.O. T.O.
12 - T.O. T.O. M.O. T.O. T.O. T.O. T.O. T.O. T.O.
13 (13,13,13,13) T.O. T.O. M.O. 88893 20733 T.O. T.O. T.O. T.O.

TABLE II
EXECUTION TIMES IN MILLISECONDS NEEDED TO SOLVE THE HIERARCHICAL BENCHMARK PROBLEMS. NOTE THAT OUR METHODS AND HillClimbing

WERE EXECUTED ON THE JAVA VIRTUAL MACHINE WHILE Z3 WAS EXECUTED IN NATIVE CODE.

Problem Number of Number of Optimal Z3 Hill- Weight- Lexico- Level-
variables constraints DoS Climbing ing graphic Wise

cc-5-5-2 25 100 (25,25,25,23) 555 1040 637 876 630
cc-6-6-2 36 225 (56,56,56,45) 2178 6187 4103 4531 2311
lemma-12-9-mod 12 30 (7,8,7,7) 2598 563 683 874 939
lemma-15-9-mod 15 49 (12,12,12,10) 10340 2650 5776 2609 5772
lemma-24-3 24 132 (33,33,33,32) 317 732 711 600 541
radar-8-24-3-2-1 144 64 (16,15,16,16) 157 444 568 552 397
radar-8-24-3-2-2 144 64 (16,15,16,16) 176 499 585 577 406
radar-8-24-3-2-5 144 64 (16,15,16,16) 164 528 626 585 417
radar-8-24-3-2-18 144 64 (15,15,16,16) 175 464 741 669 423
radar-8-24-3-2-19 144 64 (15,16,16,16) 174 508 706 649 413
radar-8-24-3-2-32 144 64 (16,15,16,15) 174 550 515 629 407
radar-8-24-3-2-41 144 64 (16,14,16,16) 173 467 505 596 399
radar-8-24-3-2-44 144 64 (16,16,15,16) 156 532 490 473 408
radar-8-24-3-2-47 144 64 (16,14,16,16) 163 467 607 577 402
radar-9-28-4-2-2 168 81 (20,19,20,21) 294 881 1017 1099 658
radar-9-28-4-2-7 168 81 (20,20,20,20) 394 1050 767 769 607
radar-9-28-4-2-9 168 81 (19,20,20,21) 343 980 1312 1136 637
radar-9-28-4-2-12 168 81 (20,19,20,21) 406 953 1135 1104 704
radar-9-28-4-2-26 168 81 (19,20,20,21) 300 871 1273 1096 599
radar-9-28-4-2-29 168 81 (20,20,19,21) 327 1339 1001 1114 809
radar-9-28-4-2-30 168 81 (20,19,20,21) 264 971 847 1149 660
radar-9-28-4-2-31 168 81 (20,20,19,21) 294 1126 913 923 690
radar-9-28-4-2-34 168 81 (20,20,18,21) 288 1064 999 1037 663
radar-9-28-4-2-43 168 81 (19,20,20,21) 300 1129 1388 1188 630
radar-9-28-4-2-47 168 81 (19,19,20,21) 304 944 1225 1265 673
radar-9-28-4-2-48 168 81 (19,20,18,21) 338 1227 1447 1288 795
radar-9-28-4-2-49 168 81 (19,20,20,21) 297 969 1185 1114 615

VII. DISCUSSION

From the results of the experiment, we did not observe
that either of the Lexicographic or the LevelWise method was
more efficient than the other. However, we cannot immediately
conclude that they have comparable efficiency since they
internally perform largely different optimization. There might
be situations that are appropriate or inappropriate for these
methods although it was not revealed by our experiment. We
need to make a detailed comparison of their internal processing
as well as comparisons using other problems.

The Weighting method almost always did not exhibit better
performance than the other methods whichever of order and
log encoding was used. Although it is a simple and clear
method based on the transformation of a constraint hierarchy
into a WCSP, the method is not very appropriate for an
external solver, which is because the resulting finite domains
easily become large. However, there exist other SAT encoding
methods [22], [26], [30]. For example, hybrid encoding [22]
automatically switches between order and log encoding ac-
cording to the sizes of finite domains. Therefore, it might be

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 



possible to improve the performance of the Weighting method
by adopting a more appropriate SAT encoding method.

The efficiency of the three proposed methods as well as
the HillClimbing method is affected by the quality of potential
solutions found during the iterative search. However, unlike
numerical problems that could use the derivatives of objective
functions, combinatorial optimization problems generally have
difficulty in searching for potential solutions in promising
directions. Therefore, our methods currently do not adopt
particular heuristics for this purpose.

The three proposed methods compute a single solution
to a constraint hierarchy. However, in the same way as the
HillClimbing method, it is easy to extend our methods to
obtain all the solutions to a constraint hierarchy. This will
enable our methods to be applied to hierarchical constraint
logic programming [29].

It also is possible to modify our methods to use global com-
parators other than UCB. However, other global comparators
such as least-squares-better often require larger domains than
UCB, which might degrade the performance. By contrast, it
is less clear whether our methods can be modified for local
comparators since binary search is not easily applicable to
local comparators.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed three methods called Weighting,
Lexicographic, and LevelWise for solving constraint hierar-
chies over finite domains. We constructed these methods by
modifying the HillClimbing method by introducing optimiza-
tion based on binary search. We also provided the imple-
mentations of these methods, and presented the results of the
experiment that we conducted to evaluate these methods. The
results showed that Lexicographic and LevelWise were more
efficient than the others.

Our future work includes further evaluation of the proposed
methods. Especially, we are considering the use of other
standard benchmark problems. The MAX-CSP 2008 Compe-
tition of the Third International CSP Solver Competition had
provided other benchmark problems that we did not use in our
experiment. To perform further experiments using these prob-
lems, we need to enhance our solver by implementing missing
facilities such as the treatment of extensional constraints. Other
future work is to explore an external CSP solver that is suitable
for our methods. Especially, we want to investigate whether
CSP solvers other than SAT-based and SMT solvers will work
well for our methods. Another direction is to explore the
possibility of parallelizing our methods for the execution on a
multi-core processor or a multi-processor computer.

ACKNOWLEDGMENT

This work was supported by JST AIP Trilateral AI Research
Grant Number JPMJCR20G4.

REFERENCES

[1] Apple, Inc., Auto Layout Guide, 2011.

[2] G. J. Badros, A. Borning, and P. J. Stuckey, “The Cassowary linear
arithmetic constraint solving algorithm,” ACM Trans. Comput.-Human
Interact., vol. 8, no. 4, pp. 267–306, 2001.

[3] S. Bistarelli, P. Codognet, K. C. Hui, and J. H.-M. Lee, “Solving finite
domain constraint hierarchies by local consistency and tree search,” J.
Exp. Theor. Artif. Intell., vol. 21, no. 4, pp. 233–257, 2009.

[4] N. Bjøner, L. de Moura, L. Nachmanson, and C. M. Wintersteiger,
“Programming Z3,” in SETSS Tutorial Lectures, ser. LNCS, vol. 11430,
2019, pp. 148–201.

[5] A. Borning, B. Freeman-Benson, and M. Wilson, “Constraint hierar-
chies,” Lisp Symbolic Comput., vol. 5, no. 3, pp. 223–270, 1992.

[6] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
TACAS, ser. LNCS, vol. 4963, 2008, pp. 337–340.

[7] B. N. Freeman-Benson, J. Maloney, and A. Borning, “An incremental
constraint solver,” Comm. ACM, vol. 33, no. 1, pp. 54–63, 1990.

[8] E. C. Freuder and A. K. Mackworth, “Constraint satisfaction: An emerg-
ing paradigm,” in Handbook of Constraint Programming. Elsevier,
2006, ch. 2, pp. 13–27.

[9] Z. Fu and S. Malik, “On solving the partial Max-SAT problem,” in Proc.
SAT, ser. LNCS, vol. 4121, 2006, pp. 252–265.

[10] H. Hosobe, “A scalable linear constraint solver for user interface
construction,” in Proc. CP, ser. LNCS, vol. 1894, 2000, pp. 218–232.

[11] ——, “A modular geometric constraint solver for user interface appli-
cations,” in Proc. ACM UIST, 2001, pp. 91–100.

[12] ——, “Solving hierarchical soft constraints with an SMT solver,” in
Proc. ICCAE. ACM, 2020, pp. 42–46.

[13] H. Hosobe and S. Matsuoka, “A foundation of solution methods for
constraint hierarchies,” Constraints, vol. 8, no. 1, pp. 41–59, 2003.

[14] H. Hosobe and K. Satoh, “Solving constraint hierarchies for hierarchical
constraint logic programming,” in Proc. JSAI Conf., no. 4F3-OS-8b-04,
2022, pp. 1–4, in Japanese.

[15] N. Hurst, K. Marriott, and P. Moulder, “Dynamic approximation of
complex graphical constraints by linear constraints,” in Proc. ACM UIST,
2002, pp. 191–200.

[16] N. Jamil, J. Müller, A. Naeem, C. Lutteroth, and G. Weber, “Extend-
ing linear relaxation for non-square matrices and soft constraints,” J.
Comput. Appl. Math., vol. 308, pp. 346–360, 2016.

[17] K. Marriott and S. S. Chok, “QOCA: A constraint solving toolkit for
interactive graphical applications,” Constraints, vol. 7, no. 3–4, pp. 229–
254, 2002.

[18] P. Meseguer, F. Rossi, and T. Schiex, “Soft constraints,” in Handbook
of Constraint Programming. Elsevier, 2006, ch. 9, pp. 281–328.

[19] H. Okamoto and K. Satoh, “An algorithm to compute minimal models
in prioritized circumscription by 0-1 integer programming,” J. JSAI,
vol. 15, no. 3, pp. 511–517, 2000, in Japanese.

[20] L. Perron and V. Furnon, “OR-Tools, ver. 9.6,” Google, 2023. [Online].
Available: https://developers.google.com/optimization/

[21] F. Rossi, P. van Beek, and T. Walsh, “Introduction,” in Handbook of
Constraint Programming. Elsevier, 2006, ch. 1, pp. 3–12.

[22] T. Soh, M. Banbara, and N. Tamura, “Proposal and evaluation of hybrid
encoding of CSP to SAT integrating order and log encodings,” Intl. J.
Artif. Intell. Tools, vol. 26, no. 1, pp. 1–29, 2017.

[23] T. Soh, N. Tamura, and M. Banbara, “Scarab: A rapid prototyping
tool for SAT-based constraint programming systems,” in Proc. SAT, ser.
LNCS, vol. 7962, 2013, pp. 429–436.

[24] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compiling finite
linear CSP into SAT constraints,” Constraints, vol. 14, no. 2, pp. 254–
272, 2009.

[25] E. Tsang, Foundations of Constraint Satisfaction. Academic Press,
1993.

[26] F. Ulrich-Oltean, P. Nightingale, and J. A. Walker, “Selecting SAT
encodings for pseudo-boolean and linear integer constraints,” in Proc.
CP, ser. LIPIcs, vol. 235, no. 38, 2022, pp. 1–17.

[27] M. van Dongen, C. Lecoutre, and O. Roussel, “Third international CSP
solver competition,” 2008. [Online]. Available: https://www.cril.univ-
artois.fr/CPAI08/

[28] T. Walsh, “SAT v CSP,” in Proc. CP, ser. LNCS, vol. 1894, 2000, pp.
441–456.

[29] M. Wilson and A. Borning, “Hierarchical constraint logic programming,”
J. Log. Program., vol. 16, no. 3–4, pp. 227–318, 1993.

[30] N.-F. Zhou and H. Kjellerstrand, “Optimizing SAT encodings for arith-
metic constraints,” in Proc. CP, ser. LNCS, vol. 10416, 2017, pp. 671–
686.

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI59109.2023.00035. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 

 


