
A Simplex-Based Scalable Linear Constraint Solver for
User Interface Applications

Hiroshi Hosobe
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: hosobe@acm.org

Abstract—We propose a scalable algorithm called HiRise2
for incrementally solving soft linear constraints over real
domains. It is based on a framework for soft constraints,
known as constraint hierarchies, to allow effective modeling of
user interface applications by using hierarchical preferences for
constraints. HiRise2 introduces LU decompositions to improve
the scalability of an incremental simplex method. Using this
algorithm, we implemented a constraint solver. We also show
the results of experiments on the performance of the solver.

Keywords-soft constraints; linear constraints; constraint solv-
ing; simplex method; user interfaces

I. INTRODUCTION

Constraints provide a powerful tool for solving various
problems, and are used in fields including programming
and artificial intelligence. Especially in programming user
interface applications such as a drawing editor, it is natural
to express the layout of graphical objects by constraints,
and the automatic solving of constraints eases the process
of graphical layout. Therefore programming with constraints
has been studied in the field of user interfaces since its
infancy [1].

In programming constraint-based user interfaces, it is im-
portant to process preferences for constraints. Programmers
need to impose various constraints such as ranges of object
positions on the screen and dragging of an object with
a mouse as well as positional relations among graphical
objects; therefore it is often difficult for them to specify such
constraints without inconsistencies. Constraint hierarchies
[2] are widely used as a theoretical framework for processing
preferences for constraints. In a constraint hierarchy, each
constraint is associated with a hierarchical preference called
a strength, and solutions are determined to satisfy as many
strong constraints as possible.

In this paper we propose an algorithm called HiRise2
for solving hierarchies of linear constraints including linear
inequalities. It can be regarded as an extension of Cassowary
[3], [4], a variant of the simplex method for hierarchies
of linear constraints. HiRise2 is different from Cassowary
mainly in the following two points:

• It internally treats the problem as an ordered constraint
hierarchy [5]–[7];

• It adopts LU decomposition for its simplex method.

HiRise2 is also similar to our previous algorithm called
HiRise [8]–[11] in that both employ ordered constraint hier-
archies and LU decomposition; however, HiRise uses them
only for processing equality constraints. HiRise2 achieves
efficient constraint solving by introducing these techniques
into the whole process including inequality manipulation.
Therefore HiRise2 can be viewed as an integration of the
advantages of HiRise and Cassowary. In addition, HiRise2
enables efficient recomputation of solutions by incremental
constraint satisfaction [12] as with HiRise and Cassowary.

The rest of this paper is organized as follows. After
presenting related work in Section II, we provide prelim-
inary introductions to constraint hierarchies in Section III.
Then we propose the HiRise2 algorithm in Section IV, and
describe its implementation in Section V and the results of
experiments on its performance in Section VI. We describe
conclusions and future work in Section VII.

II. RELATED WORK

Most of the early algorithms for solving constraint hierar-
chies, such as DeltaBlue [12], [13], treat local propagation
constraints by using a graph-theoretic approach. Such algo-
rithms are not appropriate for simultaneous constraints that
depend on each other, and therefore they are applicable only
to a limited class of problems.

Linear constraint solving algorithms were developed to
treat simultaneous constraints in constraint hierarchies. Cas-
sowary [3], [4] solves hierarchies of linear equality and
inequality constraints by transforming such a hierarchy into
a linear programming problem and then by applying an
incremental simplex method to the resulting problem. An
extended version of Cassowary [14] processes disjunctions
of linear constraints that are useful for representing non-
overlap constraints. QOCA [3], [15], [16] solves hierarchies
of linear constraints by using tableau-based algorithms.
An old version of QOCA [3] uses the active set method
to handle the least-squares criterion for constraint hierar-
chies. For this purpose, QOCA’s QCLinIneqSolver [15],
[16] performs linear complementary pivoting. HiRise [8]–
[11] also solves hierarchies of linear constraints. Its initial
versions [8], [9] treat only linear equality constraints by
using an LU decomposition-based algorithm, and its later

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI.2011.124.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

versions [10], [11] additionally support linear inequality con-
straints by externally combining a simplex method with its
LU decomposition-based algorithm. The HiRise2 algorithm,
which we propose in this paper, is along this line of research.

Researchers have been studying more complex constraints
than local propagation and linear ones. In the field of
user interfaces, for example, the Chorus constraint solver
[17], which approximately processes hierarchies of nonlinear
constraints, and a method that dynamically performs linear
approximation of geometric constraints [18] were developed.
In the field of computer-aided design, there has been much
research on geometric constraint solving methods [19] that
are to some extent similar to the aforementioned graph-
theoretic approach to local propagation constraints. By con-
trast, the HiRise2 algorithm aims at efficient processing of
hierarchies of linear constraints.

III. PRELIMINARIES

This section provides preliminary introductions to con-
straint hierarchies and ordered constraint hierarchies.

A. Constraint Hierarchies

We first describe the formulation of constraint hierarchies
[2]. Let [i, j] denote the interval of integers from i to j.
Let x be the vector (x1, x2, . . . , xn) of n variables over
the real number domain R. Let v (possibly with primes)
be the vector (v1, v2, . . . , vn) of n real numbers (which
indicates a variable assignment to x). Let C be the set of
all constraints (or each element in C can be regarded as
a constraint identifier). A strength is an integer between 0
and h, where h is a positive integer. Intuitively, strength
0 is the strongest, and a larger number indicates a weaker
strength. A constraint hierarchy H is an indexed finite
multiset {ck,i}k∈[0,h]∧i∈[1,mk] of constraints. Intuitively, ck,i

indicates the i-th constraint among the constraints associated
with strength k. The k-th level of H , denoted as Hk, is the
indexed multiset {ck,i}i∈[1,mk]. The constraints in H0 are
said to be required, and the others are said to be preferential.

An error function is of type C × Rn → R0+, where
R0+ is the set of all nonnegative real numbers. Intuitively,
error(c,v) returns the violation of c for the value v ∈ Rn of
x; especially, it returns 0 if v satisfies c. Given a constraint
hierarchy H , a comparator “better” is defined as a relation
of type Rn × Rn to determine solutions to H . Intuitively,
better(v,v′) indicates whether v better satisfies preferential
constraints in H than v′.

A solution to H is such a variable value vector that there
is no better vector among those satisfying all the required
constraints. Formally, the set S(H) of the solutions to H is
defined as follows:

S(H) = {v ∈ S0(H) | ¬ ∃v′ ∈ S0(H),better(v′,v)}

where

S0(H) = {v ∈ Rn | ∀c0,i ∈ H0, error(c0,i,v) = 0}.

Different comparators result in different kinds of solu-
tions. An important comparator is locally-better, which is
defined as

locally-better(v,v′) ≡ ∃k ∈ [1, h], ∀k′ ∈ [1, k − 1],
(∀ck′,i ∈ Hk′ , error(ck′,i,v) = error(ck′,i,v′)) ∧
(∀ck,i ∈ Hk, error(ck,i,v) ≤ error(ck,i,v′)) ∧
(∃ck,i ∈ Hk, error(ck,i,v) < error(ck,i,v′)).

There are two locally-better comparators [2], locally-error-
better (LEB; also known as locally-metric-better, LMB)
[20] and locally-predicate-better (LPB) [12], and they use
different error functions. LEB is known to be suited to
constraint-based user interfaces.

B. Ordered Constraint Hierarchies

In general, locally-better allows many solutions. However,
it is often sufficient for applications to find one locally-better
solution. Also, it is known that user interface applications
sometimes suffer from the “split stay” problem [7] due to
the existence of multiple solutions.

Ordered constraint hierarchies [5], [6] are useful for such
situations. Intuitively, in an ordered constraint hierarchy,
preferences for constraints are totally ordered inside each
level as well as among levels. Solutions to an ordered
constraint hierarchy H are defined by the following ordered-
better comparator:

ordered-better(v,v′) ≡ ∃k ∈ [1, h], ∀k′ ∈ [1, k − 1],
(∀ck′,i ∈ Hk′ , error(ck′,i,v) = error(ck′,i,v′)) ∧
(∃ck,i ∈ Hk, (∀ck,i′ ∈ Hk, i′ < i ⇒

error(ck,i′ ,v) = error(ck,i′ ,v′)) ∧
error(ck,i,v) < error(ck,i,v′)).

An advantage of ordered-better is that any ordered-better
solution is also a locally-better solution, which is guaranteed
by the following theorem [5].

Theorem 1: Let H be an arbitrary constraint hierarchy,
and SOB(H) and SLB(H) be its ordered-better and its
locally-better solution set respectively. Then the following
holds: SOB(H) ⊆ SLB(H).

Versions of ordered-better are derived from different error
functions. Ordered-error-better (OEB) adopts the same error
function as LEB, and can be used instead of LEB.

IV. THE HIRISE2 ALGORITHM

Now we propose the HiRise2 algorithm for solving hier-
archies of linear constraints.

A. Problem Statement

HiRise2 treats linear constraints aTx ./ d with a ∈ Rn,
./ ∈ {=,≥}, and d ∈ R. In addition, it supports edit and
stay constraints [13].

• An edit constraint is given to some variable xj , and
is internally represented as xj = d. It is repeatedly
updated by receiving value d from outside. Edit con-
straints handle inputs to variables, and are used, for

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI.2011.124.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

example, when an object is moved by a mouse in a
user interface.

• A stay constraint is associated with some variable xj ,
and is internally expressed as xj = d, where d is set
to the value of xj just before constraint solving. Stay
constraints are typically declared to be preferential, and
are used to keep variable values as long as they are
satisfiable in constraint hierarchies.

HiRise2 solves hierarchies of linear constraints as or-
dered constraint hierarchies by using OEB. Constraints with
strengths 0 to h − 1 are given from outside. Also, for each
xj , a default stay constraint with strength h is internally gen-
erated to prevent the solution from changing unexpectedly.
Therefore we can assume that the number of constraints is
always no smaller than the number of variables.

B. Hierarchical Linear Programming

Transforming a given constraint hierarchy H with n
variables and m constraints (where m =

∑
k∈[0,h] mk ≥ n),

HiRise2 constructs the following optimization problem that
we call a hierarchical linear programming (HLP) problem:

minimize z = Wy
subject to Ax + By = d, y ≥ 0,

where x is an n-dimensional real vector representing unre-
stricted variables (that may take any real numbers), y is a
2m-dimensional real vector representing restricted variables
(that may take nonnegative real numbers), A is an m×n real
matrix, B is an m× 2m real matrix, d is an m-dimensional
real vector, z is an m-dimensional real vector, and W is an
m × 2m real matrix.

The constraints Ax+By = d are obtained (in an arbitrary
order) by transforming the constraints in H in the same way
as Cassowary [3], [4]. Specifically, each constraint c that is
in form aTx ./ d is represented by introducing restricted
variables as follows:

aTx =

d + y+

a − y−
a if c is a required equation

d + ys − y−
a if c is a required inequality

d + y+
e − y−

e if c is a preferential equation
d + ys − y−

e if c is a preferential inequality,

where y+
a and y−

a are artificial variables, y+
e and y−

e

are error variables, ys is a slack variable, and all these
are restricted variables. After execution of HiRise2, the
following happens: the artificial variables become 0 (which
is not achieved when there are inconsistent required con-
straints, and in this case HiRise2 reports an error); error
variables are made as close to 0 as possible to conform to
constraint hierarchy solutions; slack variables are set to some
nonnegative real numbers.

The objective function z = Wy consists of m equations
zi = wT

i y, where zi is the i-th element of z, and wT
i is the

i-th row of W . Each zi = wT
i y corresponds to such ck′,i′

that 1 ≤ i′ ≤ mk′ and i =
∑

k∈[0,k′−1] mk + i′. In wT
i , we

set to 1 the element(s) corresponding to ck′,i′ ’s artificial/error
variable(s), and set the other elements to 0. In other words,
we have the following:

zi =

y+
a + y−

a if ck′,i′ is a required equation
y−
a if ck′,i′ is a required inequality

y+
e + y−

e if ck′,i′ is a preferential equation
y−
e if ck′,i′ is a preferential inequality,

where y+
a , y−

a , y+
e , and y−

e are artificial and error variables
for ck′,i′ .

Minimizing the objective function z is based on the
lexicographic order <lex, i.e.,

z <lex z′ ≡ ∃i ∈ [1,m], (∀i′ ∈ [1, i−1], zi′ = z′i′)∧zi < z′i.

It should be noted that, although Cassowary also uses
a vector-valued objective function, it calculates a vector
element for each preferential level by summing up the error
variables of the constraints in the level; by contrast, HiRise2
computes a vector element for each constraint.

Solving the resulting HLP problem, we can obtain a
solution to the original constraint hierarchy. The following
theorem shows a stronger property that the HLP problem
can be seen as being equivalent to the original hierarchy.

Theorem 2: Given any hierarchy H of linear constraints,
the OEB solution set of H is equal to the set of the unre-
stricted variable parts of the solutions to the HLP problem
constructed from H .

C. LU Decomposition Form
HiRise2 extends the LU decomposition-based simplex

method [21] to solve HLP problems. In simplex methods,
variables are divided into basic and nonbasic variables. Let
x∗ and x◦ be the basic and the nonbasic variables of the
unrestricted variables respectively, and y∗ and y◦ be the
basic and the nonbasic variables of the restricted variables
respectively. Although the numbers of their dimensions
depend on the progress of the simplex method, we always
have the following relations: dim(x∗) + dim(x◦) = n,
dim(y∗) + dim(y◦) = 2m, and dim(x∗) + dim(y∗) = m.

We can write the HLP problem in the following way:

minimize z = W ∗y∗ + W ◦y◦

subject to A∗x∗ + A◦x◦ + B∗y∗ + B◦y◦ = d
y∗ ≥ 0, y◦ ≥ 0.

We further rewrite the first constraint equation as follows:

[A∗ B∗]
[

x∗

y∗

]
= d − [A◦ B◦]

[
x◦

y◦

]
. (1)

Now we introduce an LU decomposition [A∗ B∗] = LU
using a lower triangular matrix L and an upper triangular
matrix U whose diagonal elements are 1. Multiplying both
hand sides of (1) by L−1 from the left, we obtain the
following LU decomposition form:

U

[
x∗

y∗

]
=

[
d̂
ď

]
+

[
Â B̂
Ǎ B̌

] [
x◦

y◦

]
, (2)

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI.2011.124.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

repeat
find an entry variable y◦

q or x◦
q ;

if such y◦
q or x◦

q was found then
find an exit variable y∗

p ;
do pivoting about (y∗

p , y◦
q) or (y∗

p , x◦
q);

until no entry variable is found ;

Figure 1. Simplex optimization in HiRise2.

where [d̂T ďT]T = L−1d, [ÂT ǍT]T = −L−1A◦, and
[B̂T B̌T]T = −L−1B◦.

HiRise2 achieves L−1G = U by computing L−1 and
U (where we consider G = [A∗ B∗] for simplicity). In
the LU decomposition-based simplex method [21], L−1

and U are incrementally computed when G is modified by
pivoting (which is described later). For this purpose, L−1 is
represented as the following multiplications of matrices:

L−1 = TfTf−1 · · ·T1,

where Tf ′ for each f ′ ∈ [1, f] is a transformation matrix
that is either an eta matrix [21] to eliminate a column of G
or a matrix to move rows of G.

The LU decomposition form has a close relation with the
tableau form that is used in the ordinary simplex method. In
fact, multiplying both hand sides of the LU decomposition
form by U−1 from the left (which is easily computable),
and substituting y∗ in the objective function, we can obtain
the following tableau form: z

x∗

y∗

 =

 W ∗ď′

d̂′

ď′

 +

 W u W r

Â′ B̂′

Ǎ′ B̌′

[
x◦

y◦

]
, (3)

where [(d̂′)T (ď′)T]T = U−1[d̂T ďT]T, [(Â′)T (Ǎ′)T]T =
U−1[ÂT ǍT]T, [(B̂′)T (B̌′)T]T = U−1[B̂T B̌T]T, W u =
W ∗Ǎ′, and W r = W ∗B̌′ + W ◦. As with the tableau form
for the ordinary simplex method, the tentative solution is
x∗ = d̂′, y∗ = ď′, x◦ = 0, and y◦ = 0.

D. Simplex Optimization

To solve an HLP problem, HiRise2 performs simplex opti-
mization that repeatedly updates its LU decomposition form
(2) by applying pivoting operations as shown in Figure 1,
which is basically the same as the ordinary simplex method.
A pivoting operation exchanges a basic variable called an
exit with a nonbasic variable called an entry, in order to
decrease the value of the objective function.

Before pivoting, the algorithm needs to find a pair of
an exit and an entry variable. Unlike the ordinary simplex
method, HiRise2 treats a vector-valued objective function
and unrestricted variables. In this sense, HiRise2 is similar
to Cassowary, but is still largely different in how to construct
a vector-valued objective function.

Reconsider the tableau form (3), and let each wu
j be the

j-th column of W u, each wr
j be the j-th column of W r,

each d′
i be the i-th element of [(d̂′)T (ď′)T]T, each a′

i,j be
the (i, j)-element of [(Â′)T (Ǎ′)T]T, and each b′i,j be the
(i, j)-element of [(B̂′)T (B̌′)T]T. Then the algorithm finds
a pair of an exit and an entry variable (y∗

p , y◦
q) or (y∗

p, x◦
q)

as follows:
• It finds such (y∗

p, y◦
q) that wr

q <lex 0 ∧ b′p,q < 0 ∧ ∀i ∈
[1, dim(y∗)], b′i,q < 0 ⇒ d′i/b′i,q ≤ d′

p/b′p,q;
• It finds such (y∗

p , x◦
q) that wu

q <lex 0∧ a′
p,q 6= 0∧∀i ∈

[1, dim(y∗)], a′
i,q 6= 0 ⇒ |d′

i/a′
i,q| ≥ |d′p/a′

p,q|.
If there is no such pair found, the solution is optimal,
and the simplex optimization terminates. It should also be
noted that, when an exit variable is searched for, an entry
variable is already known; this means that the algorithm can
predetermine an entry variable as shown in Figure 1.

After finding the exit and entry variables, the algorithm
updates the LU decomposition form by applying a pivoting
operation. For pivoting about (y∗

p , y◦
q), we adopt a technique

called the Forrest-Tomlin method [22]. For pivoting about
(y∗

p , x◦
q), we use a straightforward method.

It should be noted that guaranteeing the termination of
the algorithm requires similar treatments to those for the
ordinary simplex method, such as cycling prevention [21].

E. Incremental Constraint Solving

HiRise2 performs incremental constraint solving for the
following four operations.

1) Adding a Constraint: When a new constraint is added
to the constraint hierarchy that is already solved, HiRise2
incrementally processes the added constraint without solving
the hierarchy from scratch. For this purpose it needs to
update the LU decomposition form by keeping the non-
negativity of the restricted variables.

Consider the following LU decomposition form before the
addition:[

Ûu Û r

Ǔ

] [
x∗

y∗

]
=

[
d̂
ď

]
+

[
Â B̂
Ǎ B̌

] [
x◦

y◦

]
.

Let (a∗)Tx∗ + (a◦)Tx◦ = d + y+ − y− be the added
constraint with its new restricted variables y+ and y−. Then
consider the following: Ûu Û r

Ǔ
(a∗)T 0T 1

 x∗

y∗

y−

 =

 d̂
ď
d

+

 Â B̂
Ǎ B̌

−(a◦)T 0T 1

 x◦

y◦

y+

 .

By multiplying both hand sides by appropriate transforma-
tion matrices, we can transform the matrix on the left-hand
side into an upper triangular one. Let d′ be the value obtained
by transforming d after this process. If d′ ≥ 0, we have
y− = d′ ≥ 0, and therefore the result of this transformation
can be used as an LU decomposition form. If d′ < 0, we
consider the alternative equation that uses y+ as a basic

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI.2011.124.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

variable and y− as a nonbasic variable, by which we can
obtain an LU decomposition form.

2) Removing a Constraint: HiRise2 also supports incre-
mental removal of an existing constraint from a hierarchy.
As with adding a constraint, it needs to update the LU
decomposition form appropriately. Firstly it needs to have
one of the restricted variables of the removed constraint
as a basic variable. If both are nonbasic, one of them is
turned into a basic variable by using the same technique as
Cassowary [3], [4].

Let (a∗
i)

Tx∗ + (a◦
i)

Tx◦ = di + y◦
q − y∗

p be the constraint
that we remove. Then the equation (1) before the removal
can be written as follows: A∗

− B∗
−,− 0 B∗

−,+

(a∗
i)

T 0T 1 0T

A∗
+ B∗

+,− 0 B∗
+,+

x∗

y∗
−

y∗
p

y∗
+

=

 d−
di

d+

 −

 A◦
− B◦

−,− 0 B◦
−,+

(a◦
i)

T 0T 1 0T

A◦
+ B◦

+,− 0 B◦
+,+

x◦

y◦
−

y◦
q

y◦
+

 .

Note that the values of x∗, y∗
−, and y∗

+ in the corresponding
solution do not depend on the constraint that is removed.
Therefore y∗

− and y∗
+ remain nonnegative in the following

equation after the constraint is removed:[
A∗

− B∗
−,− B∗

−,+

A∗
+ B∗

+,− B∗
+,+

] x∗

y∗
−

y∗
+

=

[
d−
d+

]
−

[
A◦

− B◦
−,− B◦

−,+

A◦
+ B◦

+,− B◦
+,+

] x◦

y◦
−

y◦
+

 .

The algorithm obtains the LU decomposition form by com-
puting the LU decomposition of the matrix on the left-hand
side from scratch. It should be noted that this process is
expected to be faster than computing the LU decomposition
form from scratch, since it reuses the basic and the nonbasic
variable set.

3) Processing a Stay Constraint: HiRise2 incrementally
processes existing stay constraints. The basic idea behind
this operation is similar to that for Cassowary [3], [4] (and
the algorithm is simpler than that for Cassowary). Before
constraint solving, it updates vector d in equation (1) by
changing its elements corresponding to stay constraints; if an
element di of d corresponds to a stay constraint for variable
xj , it is changed into the value of xj in the previous solution.
Then the algorithm obtains a new vector [d̂T ďT]T in (2) by
multiplying the updated d by L−1. It should be noted that
the nonnegativity of the restricted variables is not violated
by this algorithm.

4) Processing an Edit Constraint: HiRise2 incrementally
processes existing edit constraints, which is also based on
the same idea as Cassowary [3], [4]. In the incremental

Figure 2. A binary tree of height 6.

simplex method, edit constraints require more care than stay
constraints, because simply changing vector d in equation
(1) may violate the nonnegativity of the restricted variables.
If such a violation happens, the algorithm fixes it by dual
simplex optimization as with Cassowary.

V. IMPLEMENTATION

Using the HiRise2 algorithm described in the previous
section, we implemented a constraint solver. It is written in
the Scala language, and is usable also for Java programs.
Its application programming interface is similar to those of
HiRise [8]–[11] and Cassowary [3], [4]; the programmer
constructs variables and constraints as objects, and adds to or
removes from the constraint solver such constraint objects.

VI. EXPERIMENTS

We performed experiments on the HiRise2 algorithm by
using the implementation described in the previous section.
For the experiments we used the constraint-based layout
of binary trees as illustrated in Figure 2. We executed the
experiments on a 2.3 GHz dual-core Core i5 processor with
4 GB of memory. We compared the performance of HiRise2
with that of the Java implementation of HiRise [10].

We performed two experiments. In the first experiment,
we included only small numbers of inequality constraints.
In this case, HiRise was quite fast as shown in Table I.
In the second experiment, we included numerous inequality
constraints by specifying the positional range of each node.
In this case, HiRise was largely slowed down as shown
in Table II. By contrast, the performance of HiRise2 was
not much degraded; this was due to the integration of the
simplex method into the core of its algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed the HiRise2 constraint solv-
ing algorithm for user interface applications. It efficiently
processes hierarchies of linear constraints by exploiting
ordered constraint hierarchies and the LU decomposition-
based simplex method. We also presented its implementation
and the results of experiments on its performance.

Our future work includes showing the practical usefulness
of HiRise2 by developing several user interface applications.
Another future direction is to extend HiRise2 to support

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI.2011.124.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Table I
EXPERIMENT ON THE PROCESSING OF SMALL NUMBERS OF

INEQUALITY CONSTRAINTS.

Tree # of constraints # of Exec. times (ms)
heights Operations Add Remove Total inequalities HiRise2 HiRise

6 Initial layout 264 4 260 6 49 14
Start move 2 0 262 6 3 1
Repeat move 0 0 262 6 2 1
Finish move 0 2 260 6 8 1
Add node 6 2 264 6 11 1

7 Initial layout 520 4 516 6 248 64
Start move 2 0 518 6 7 1
Repeat move 0 0 518 6 4 1
Finish move 0 2 516 6 20 1
Add node 6 2 520 6 25 1

8 Initial layout 1032 4 1028 6 1632 441
Start move 2 0 1030 6 15 2
Repeat move 0 0 1030 6 6 1
Finish move 0 2 1028 6 62 2
Add node 6 2 1032 6 89 4

Table II
EXPERIMENT ON THE PROCESSING OF LARGE NUMBERS OF

INEQUALITY CONSTRAINTS.

Tree # of constraints # of Exec. times (ms)
heights Operations Add Remove Total inequalities HiRise2 HiRise

6 Initial layout 512 4 508 254 329 53
Start move 2 0 510 254 7 25
Repeat move 0 0 510 254 4 1
Finish move 0 2 508 254 23 25
Add node 10 2 516 258 33 34

7 Initial layout 1024 4 1020 510 1980 327
Start move 2 0 1022 510 11 156
Repeat move 0 0 1022 510 8 1
Finish move 0 2 1020 510 97 157
Add node 10 2 1028 514 107 164

8 Initial layout 2048 4 2044 1022 11338 2546
Start move 2 0 2046 1022 36 1345
Repeat move 0 0 2046 1022 17 4
Finish move 0 2 2044 1022 351 1349
Add node 10 2 2052 1026 420 1359

more complex constraints such as disjunctive linear con-
straints [14].

REFERENCES

[1] I. E. Sutherland, “Sketchpad: A man-machine graphical com-
munication system,” in Proc. AFIPS Spring Joint Conf., 1963,
pp. 329–346.

[2] A. Borning, B. Freeman-Benson, and M. Wilson, “Constraint
hierarchies,” Lisp Symbolic Comput., vol. 5, no. 3, pp. 223–
270, 1992.

[3] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao, “Solving
linear arithmetic constraints for user interface applications,”
in Proc. ACM UIST, 1997, pp. 87–96.

[4] G. J. Badros, A. Borning, and P. J. Stuckey, “The Cassowary
linear arithmetic constraint solving algorithm,” ACM Trans.
Comput.-Human Interact., vol. 8, no. 4, pp. 267–306, 2001.

[5] A. Wolf, “Transforming ordered constraint hierarchies into
ordinary constraint systems,” in Over-Constrained Systems,
ser. LNCS, vol. 1106, 1996, pp. 171–187.

[6] H. Rudová, “Constraints with variables’ annotations and con-
straint hierarchies,” in Proc. SOFSEM, ser. LNCS, vol. 1521,
1998, pp. 409–418.

[7] A. Borning and G. J. Badros, “On finding graphically plau-
sible solutions to constraint hierarchies: The split stay prob-
lem,” in CP2000 Workshop on Soft Constraints: Theory and
Practice, 2000.

[8] H. Hosobe, S. Matsuoka, and A. Yonezawa, “HiRise: An
incremental constraint solver for constructing graphical user
interfaces,” Comput. Softw., vol. 16, no. 6, pp. 33–45, 1999,
in Japanese.

[9] H. Hosobe, “Speeding up HiRise, a linear constraint hierarchy
solver for graphical user interfaces,” Comput. Softw., vol. 17,
no. 2, pp. 25–29, 2000, in Japanese.

[10] ——, “A scalable linear constraint solver for user interface
construction,” in Proc. CP, ser. LNCS, vol. 1894, 2000,
pp. 218–232.

[11] ——, “A linear equality and inequality constraint solver for
user interfaces,” Comput. Softw., vol. 19, no. 6, pp. 13–20,
2002, in Japanese.

[12] B. N. Freeman-Benson, J. Maloney, and A. Borning, “An
incremental constraint solver,” Comm. ACM, vol. 33, no. 1,
pp. 54–63, 1990.

[13] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Born-
ing, “Multi-way versus one-way constraints in user interfaces:
Experience with the DeltaBlue algorithm,” Softw. Pract. Ex-
per., vol. 23, no. 5, pp. 529–566, 1993.

[14] K. Marriott, P. Moulder, P. J. Stuckey, and A. Borning,
“Solving disjunctive constraints for interactive graphical ap-
plications,” in Proc. CP, ser. LNCS, vol. 2239, 2001, pp. 361–
376.

[15] K. Marriott, S. S. Chok, and A. Finlay, “A tableau based con-
straint solving toolkit for interactive graphical applications,”
in Proc. CP, ser. LNCS, vol. 1520, 1998, pp. 340–354.

[16] K. Marriott and S. S. Chok, “QOCA: A constraint solving
toolkit for interactive graphical applications,” Constraints,
vol. 7, no. 3–4, pp. 229–254, 2002.

[17] H. Hosobe, “A modular geometric constraint solver for user
interface applications,” in Proc. ACM UIST, 2001, pp. 91–
100.

[18] N. Hurst, K. Marriott, and P. Moulder, “Dynamic approxima-
tion of complex graphical constraints by linear constraints,”
in Proc. ACM UIST, 2002, pp. 191–200.

[19] C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis, “De-
composition of geometric constraint systems: A survey,” Intl.
J. Comput. Geom. Appl., vol. 16, no. 5–6, pp. 379–414, 2006.

[20] A. Borning, R. Anderson, and B. Freeman-Benson, “Indigo:
A local propagation algorithm for inequality constraints,” in
Proc. ACM UIST, 1996, pp. 129–136.

[21] V. Chvátal, Linear Programming. W. H. Freeman, 1983.

[22] J. J. H. Forrest and J. A. Tomlin, “Updated triangular factors
of the basis to maintain sparsity in the product form simplex
method,” Math. Prog., vol. 2, pp. 263–278, 1972.

This is the author's version. The final authenticated version is available online at https://doi.org/10.1109/ICTAI.2011.124.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

