
A Video Game-Like Approach to Supporting
Novices in Learning Programming

Ami Sakakibara1 and Hiroshi Hosobe1

Faculty of Computer and Information Sciences,
Hosei University, Tokyo, Japan

hosobe@acm.org

Abstract. In the education of introductory programming, people often
adopt block-based visual programming languages such as Scratch and
Blockly that allow programmers to construct programs by placing vi-
sual blocks. A previous study showed that a block-based language was
more effective than a text-based language in introductory programming
education. However, even with such block-based languages, it is still nec-
essary for novices to learn programming in traditional ways, for example,
by hearing lectures, reading textbooks, or watching tutorial videos. In
this paper, we propose a video game-like approach to supporting novices
in learning programming. We introduce two concepts into a block-based
programming system: one is a staging mechanism that allows novices to
gradually obtain more complex means of programming; the other is an
assistant chatbot that helps novices to gain knowledge of programming.
We implemented the system by applying our approach to turtle graphics.
We present results of the experiment that we conducted to evaluate our
approach.

Keywords: Block-based visual programming · Programming learning ·
Gamification.

1 Introduction

Programming education is being actively conducted throughout the world to
increase students interested in computer science and to acquire excellent hu-
man resources for the information technology industry. In the education of in-
troductory programming, people often adopt block-based visual programming
languages such as Scratch [7, 10] and Blockly [9] that allow programmers to con-
struct programs by placing visual blocks. A previous study showed that a block-
based language was more effective than a text-based language in introductory
programming education [12]. However, even with such block-based languages,
it is still necessary for novices to learn programming in traditional ways, for
example, by hearing lectures, reading textbooks, or watching tutorial videos.

In this paper, we propose a video game-like approach to supporting novices
in learning programming. We introduce two concepts into a block-based pro-
gramming system: one is a staging mechanism that allows novices to gradually

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



2 A. Sakakibara and H. Hosobe

obtain more complex means of programming; the other is an assistant chatbot
that helps novices to gain knowledge of programming. We implemented the sys-
tem by applying our approach to turtle graphics [1]. We present results of the
experiment that we conducted to evaluate our approach.

The rest of this paper is organized as follows. Section 2 describes previous
work related to our approach. Section 3 proposes our approach, and Section 4
gives its implementation. Section 5 presents results of the experiment, and Sec-
tion 6 discusses the approach. Finally, Section 7 provides conclusions and future
work.

2 Related Work

One of the most related work was done by Arawjo et al. [2]. They proposed a
progression design of a visual programming system that could be seen as being
similar to our staging mechanism. However, they adopted functional program-
ming, which is very different from block-based programming that is often used
for introductory programming education.

Game-like approaches have been adopted also in the visual programming
community. Bauer et al. [3] developed a block-based programming game called
Dragon Architect to directly teach computational thinking strategies. Malizia
et al. [6] developed a game-based system called TAPASPlay to foster computa-
tional thinking skills, focusing on playfulness and collaboration. Taylor et al. [11]
developed a toolkit called IntelliBlox to enable learners to create block-based pro-
grams in immersive game-based learning environments. Lytle et al. [5] developed
a game called Resource Rush to allow users to learn programming in open-ended
game environments.

Fujimoto et al. [4] discussed research trends in game-based learning and open
education. Open education refers to practice that eliminates barriers from edu-
cation and increases educational opportunities. They recognized these two areas
as becoming increasingly popular in the next few years.

Mineuchi et al. [8] developed a chatbot-based tool to allow students to easily
perform preparation and review of their lessons by using a communication tool
called LINE. They claimed that it would enable the students to increase oppor-
tunities for learning, to prepare without fear of failure, and to organize their
thoughts.

3 Proposed Approach

We propose an approach to supporting novices in learning programming. The
characteristic of our approach is that it allows novice users to enjoy learning
programming as if they play introductory parts of video games. For this purpose,
we particularly introduce the following two concepts into a block-based visual
programming system.

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



Supporting Novices in Learning Programming 3

Fig. 1. Staging mechanism that gradually increases the available types of blocks as the
user achieves goals for stages.

Staging mechanism: The system initially limits the types of visual blocks that
the user can employ to construct a program, and it gradually increases the
available types of blocks as the user achieves goals for stages (Figure 1).

Assistant chatbot: The system provides a chatbot that assists the user in
learning programming by him/herself. As a help function, it explains in
detail how to use blocks, and also it communicates with the user by making
simple conversations.

Figure 2 shows the initial screen of our visual programming system. It allows
the user to construct a block-based visual program for turtle graphics on part
(a) of the screen, and presents the resulting graphics on part (b). On part (c)
of the screen, it shows the points that correspond to the current stage. On part
(d), it presents available blocks for the current stage. The user can call a chatbot
by pressing button (e), which opens window (f) and makes the chatbot talk to
the user.

3.1 Staging Mechanism

The staging mechanism increases the available types of blocks when the user
achieves a given goal. It currently presents the following four stages:

Stage 1: Draw a straight line.
Stage 2: Draw a polygon.
Stage 3: Draw a geometric shape with a “repeat” block.
Stage 4: Draw free shapes.

Each stage is associated with a goal. For example, the goal for stage 1 is “Draw
a straight line.” The current stage is indicated by the points shown on the screen
(at (c) in Figure 2). When the user achieves a goal, 100 points are added. The
user can ask the chatbot about goals and points.

At stage 1, only one block “move forward or backward” is available. When
the user achieves the goal by using and executing ore or more blocks, points and

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



4 A. Sakakibara and H. Hosobe

(e) (f)(c) (d)(b) (a)

Fig. 2. Initial screen of our visual programming system.

a new block are added. When the system reads blocks to execute the program,
it judges whether the goal has been achieved. If the goal has been achieved, it
adds 100 points and reloads a page for stage 2 with an additional block.

At stage 2, two blocks including a new block “turn right or left” are available.
At stage 3, a block “repeat” further becomes available. At stage 4, many types
of blocks become available and can be freely combined.

3.2 Assistant Chatbot

Basically, the user communicates with the chatbot by selecting a message that
is sent to the chatbot.

Help function. The user can ask the chatbot about various things such as how
to use a block and how to effectively apply a block, by selecting “Help” from
the menu that pops up when the user right-clicks a block. For example, when
a block “move forward” is selected, a figure is presented to show that it draws
a straight line, other related blocks also are given, and examples that can be
drawn by combining other blocks are shown. Instead of immediately teaching
the answer, it aims at enhancing the user’s ability to think about how to achieve
the goal.

Conversation function. Unlike the help function that can be asked about
specific blocks, the conversation function answers more general questions such

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



Supporting Novices in Learning Programming 5

as a question about the user interface. The conversation function of the chatbot
is triggered when the button (e) in Figure 2 is pressed. It particularly aims at
resolving questions of novice users who do not know what to do initially.

The conversation function always begins by asking whether there is any ques-
tion. If there is no question, it finishes the conversation. Otherwise, it presents
several choices to the user to identify what is the actual question. The first
questions are about four things, i.e., “turtle graphics,” “how to use,” “points,”
and “blocks.” After one of them is selected, it repeatedly presents more detailed
questions. For example, if the user wants to ask about a block and selects the
question about blocks, the user is prompted to use the help function. As an-
other example, if the user selects the question about “how to use,” it shows a
screenshot of the user interface with numbers attached to its parts, which allows
the user to select a part about which the user wants to ask. After reading the
answer about the selected part, the user can return to the previous question to
ask about another part.

4 Implementation

We implemented the system as a Web application by using Blockly [9] and its
turtle graphics application. We used a JavaScript framework called BotUI to
implement the assistant chatbot. The chatbot can be called by using a right-
click pop-up menu as well as by pressing the button (e) in Figure 2.

The staging mechanism was implemented as reloading the page, which adds
points and new blocks. Right after the reloading, the system displays a dialog
box to inform that points have been added and new blocks have been introduced.
When beginning stage 4, it additionally opens a pop-up window that informs
that the final stage has been reached.

5 Experiment

We conducted an experiment to evaluate our approach. The purpose of the exper-
iment was to examine whether the system based on our approach could improve
its users’ motivations for learning programming as well as whether it could re-
duce differences among the skills of the users caused by their past experiences
in programming.

5.1 Participants

We recruited five participants (all male and 14.3 year old on average), three of
whom had no experience in programming. In the following, we refer to them as
participants A to E. Participants B and D had previous experiences in program-
ming.

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



6 A. Sakakibara and H. Hosobe

5.2 Procedure

We asked the participants to use our system. We measured the times that they
spent to complete stages, and conducted questionnaires before and after the
experiment.

Time measurement. To examine the influence of the past experiences of the
participants in programming, we measured the times that they spent to complete
each of the first three stages. For this purpose, we took them on video during
the experiment. A camera was placed diagonally to the rear of each participant
to make his hands and the computer screen visible to the camera.

Questionnaires. To examine the changes of the motivations of the participants
for learning programming, we conducted questionnaires with the five-level Likert
scale before and after the experiment. Both pre- and post-questionnaires included
the following questions:

– Do you think that you are good at programming?
– Do you think that you enjoy programming if you learn programming in the

future?
– Do you think that programming is difficult if you learn programming in the

future?
– Do you positively want to learn programming in the future?

The post-questionnaire additionally included the following questions about
our system:

– Did you use the chatbot?
– Was the chatbot easy to understand?
– Did you have a sense of achievement when you reached a goal?

The post-questionnaire also collected free descriptions of what difficulties the
participants faced while using the system.

5.3 Results

We report the results of the experiment below.

Time measurement. Table 1 shows the times that the participants spent
to complete stages 1, 2, and 3. Table 2 shows how many times they used the
chatbots. The conversation function of the chatbot can answer the following
questions: what is turtle graphics (indicated as “TG” in the table); I do not know
how to use this user interface (indicated as “Interface” and with the numbers
shown in Figure 3); I want to know about points (indicated as “Point”); I want to
know about blocks (indicated as “Block”). Also, the help function of the chatbot
can answer the following questions: how to move forward or backward (indicated

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



Supporting Novices in Learning Programming 7

Table 1. Times that the participants spent to complete stages.

Participant Stage 1 Stage 2 Stage 3 Total

A 0:01:19 0:16:27 0:02:34 0:20:20
B 0:01:31 0:06:16 0:04:22 0:12:09
C 0:05:39 0:34:18 0:06:59 0:46:56
D 0:13:20 0:00:52 0:04:00 0:18:12
E 0:02:57 0:22:56 0:40:57 1:06:50

Average 0:04:57 0:16:10 0:11:46 0:32:53

Table 2. Numbers of the uses of the chatbots by the participants.

Participant Conversation Help
TG Interface Point Block Move Turn Repeat

1 2 3 4 5 6 7&8

A 2 1 1 1
B 1 1 1 1 3 1
C 2 4 3 1 1 1 2
D 1 2 1 2 1
E 1 4 1 1 1 1

Total 4 1 12 7 2 1 2 7 0 4 2 1 0

as “Move” in the table); how to turn right or left (indicated as “Turn”); how to
repeat (indicated as “Repeat”).

The times of the participants A, B, C, and E show that stage 2 took longer
than stage 1. By contrast, participant D spent a longer time at stage 1. This
was probably because when the program should be executed was not explicitly
explained. It was observed that participant D pressed the execute button before
placing blocks in the workspace and did not press the execute button long after
placing blocks. Also, participant D had a previous experience in programming,
and did not spend particularly long times at stages 2 and 3.

Participants A, B, and C spent shorter times at stage 3 than at stage 2. This
was probably because the goal for stage 3 was not very different from the goal
for stage 2. By contrast, participants D and E spent longer times at stage 3 than
at stage 2. This was probably because they initially thought that a repeat block
could contain only one block. We prepared a help function about a repeat block
that explains that it could contain one or more blocks. However, no participants
used this help function as shown in Table 2.

Questionnaires. Table 3 shows the results of the questionnaires. The five-level
Likert scale consists of the following: “strongly agree” as 5, “agree” as 4, “un-
decided” as 3, “disagree” as 2, and “strongly disagree” as 1. We performed a
paired t-test between the scores of the pre- and the post-questionnaire. The re-

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



8 A. Sakakibara and H. Hosobe

1 2
7 8

3

4 6

5

Fig. 3. User interfaces about which the chatbot can be asked.

sults show that there were no significant differences concerning the four questions
described in Subsection 5.2. This means that our system did not bring sufficient
psychological influences.

The questions about our system in the post-questionnaire showed the follow-
ing. All the participants used the chatbot. Four participants strongly agreed to
the question “Was the chatbot easy to understand?” and the other one agreed to
it. Four participants agreed to the question “Did you have a sense of achievement
when you reached a goal?”

In the post-questionnaire, participants A to E provided the following free
descriptions of difficulties in using the system:

A. I did not know what I should do before the chatbot taught me about it.

B. I spent a little long time in repeating blocks.

C. I did not understand the goal “geometric shape” for stage 3.

D. It was hard to draw a polygon by combining various blocks in stage 3.

E. It was difficult to draw a polygon.

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



Supporting Novices in Learning Programming 9

Table 3. Results of the questionnaires before and after the experiment.

Good at Enjoy Programming Want to learn
programming programming is difficult programming

Participant Before After Before After Before After Before After

A 3 4 4 5 4 4 5 5
B 3 4 4 5 3 2 3 5
C 2 2 4 3 3 5 3 2
D 4 4 4 5 4 4 3 3
E 2 1 5 4 4 5 5 4

Mean 2.8 3.0 4.2 4.4 3.6 4.0 3.8 3.8
Variance 0.7 2.0 0.2 0.8 0.3 1.5 1.2 1.7

6 Discussion

Although the experimental results did not statistically show psychological in-
fluences, differences among the participants’ reactions and spent times were ob-
served. A cause for the large differences among the novice participants was that
the explanation about how to use a repeat block was insufficient. Although we
had included the explanation in the help function, no participants used it during
the experiment. It might seem plausible that the help function should be moved
to the conversation function because the conversation function was relatively
more used. However, this would largely increase choices when the number of
block types would become large. Since there were participants who did not use
the help function at all, the right-click pop-up menu is considered to be inap-
propriate. It might have been possible to trigger the help function by placing a
block about which a user wants to know.

Our system enabled the participants to achieve the goals by themselves,
which suggests that we were able to develop a programming system for novice
programmers. However, our system is still not sufficient for improving compu-
tational thinking because it does not sufficiently support the participants in
correctly using repeat blocks.

7 Conclusions and Future Work

We proposed a video game-like approach to supporting novices in learning pro-
gramming. We introduced a staging mechanism and an assistant chatbot into
a block-based programming system. The experiment that we conducted sug-
gested the usefulness of the staging mechanism and the conversation function of
the chatbot. However, it showed that the help function of the chatbot was not
useful. This problem could be solved by simplifying the interface for triggering
the help function. The experiment also suggested the necessity of a function for
supporting users in understanding repeat blocks.

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 



10 A. Sakakibara and H. Hosobe

Acknowledgment

This work was partly supported by JSPS KAKENHI Grant Number JP17H01726.

References

1. H. Abelson, N. Goodman, and L. Rudolph. LOGO manual. AI Memo 313, AI
Lab., MIT, 1974.

2. I. Arawjo, C.-Y. Wang, A. C. Myers, E. Andersen, and F. Guimbretière. Teaching
programming with gamified semantics. In Proc. ACM CHI, pages 4911–4923, 2017.

3. A. Bauer, E. Butler, and Z. Popović. Dragon Architect: Open design problems for
guided learning in a creative computational thinking sandbox game. In Proc. Intl.
Conf. on the Foundations of Digital Games (FDG), number 26, pages 1–6. ACM,
2017.

4. T. Fujimoto, K. Shigeta, and Y. Fukuyama. The research trends in game-based
learning and open education. Educ. Technol. Res., 39(1):15–23, 2016.

5. N. Lytle, J. Echavarria, J. Sosa, and T. W. Price. Resource Rush: Towards an
open-ended programming game. In Proc. Workshop on Blocks and Beyond, pages
91–93. IEEE, 2019.

6. A. Malizia, T. Turchi, D. Bell, D. Fogli, and F. Danesi. Fostering computa-
tional thinking through collaborative game-based learning. Multimed. Tools Appl.,
78:13649–13673, 2019.

7. J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The Scratch
programming language and environment. ACM Trans. Comput. Educ., 10(4):16:1–
15, 2010.

8. A. Mineuchi, R. Matsuba, M. Toda, and K. Suzuki. Design of an educational
supporting tool for encouragement of learning with a chat bot. In Proc. Annual
Meeting of the Academic Exchange for Information Environment and Strategy,
number TF2-5, pages 1–6, 2017. In Japanese.

9. E. Pasternak, R. Fenichel, and A. N. Marshall. Tips for creating a block language
with Blockly. In Proc. Workshop on Blocks and Beyond, pages 21–24. IEEE, 2017.

10. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Bren-
nan, A. Millner, E. Rosenbaum, J. S. Silver, B. Silverman, and Y. B. Kafai. Scratch:
Programming for all. Comm. ACM, 52(11):60–67, 2009.

11. S. Taylor, W. Min, B. Mott, A. Emerson, A. Smith, E. Wiebe, and J. Lester.
IntelliBlox: A toolkit for integrating block-based programming into game-based
learning environments. In Proc. Workshop on Blocks and Beyond, pages 55–58.
IEEE, 2019.

12. D. Weintrop and U. Wilensky. Comparing block-based and text-based program-
ming in high school computer science classrooms. ACM Trans. Comput. Educ.,
18(1):3:1–25, 2017.

© Springer Nature Switzerland AG 2021 
This is the author's version. The final authenticated version is available online at 
https://doi.org/10.1007/978-3-030-77943-6_6. 

 


