
© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ESSE2020, https://doi.org/10.1145/3393822.3432338

Testing Event-Driven Programs in Processing
Hiroshi Hosobe

Faculty of Computer and Information Sciences, Hosei University
3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

hosobe@acm.org

ABSTRACT

Event-driven programming is a paradigm that is widely used in

many fields. Processing is a set of programming languages and

environments specialized in event-driven programming for

interactive graphical applications. It provides only low-level
event-handling functions, which imposes difficulty on novice

programmers in programming complex behaviors. This paper

proposes a method for unit-testing event-driven Processing

programs. It allows writing testable Processing programs and test
programs in Java. To demonstrate how it works, this paper

presents case studies on testing whether mouse and key events are

correctly handled.

CCS Concepts

• Software and its engineering→Software creation and

management→Software verification and

validation→Software defect analysis→Software testing and

debugging; • Software and its engineering→Software

notations and tools→Context specific languages→Graphical

user interface languages

Keywords

unit testing; event-driven programming; Processing

1. INTRODUCTION
Event-driven programming is a paradigm that is widely used in

many fields including operating systems, distributed systems, and
graphical user interfaces [1][2][3]. It constructs a program as a set

of procedures (called event handlers) that process various events

(or actions) that come from, for example, other processes, remote

computers, and user interface devices.

Processing [4][5] is a set of programming languages and

environments that are often used for the education of novice

programmers. A characteristic of Processing is that it is

specialized in event-driven programming for interactive graphical
applications; in Processing, programmers construct programs by

writing event handlers. Unlike ordinary graphical user interface

programming environments, Processing provides only low-level

functions, which imposes difficulty on novice programmers in

writing programs that exhibit complex behaviors.

In this paper, we propose a method for testing event-driven

programs that are written in Processing. It is based on unit testing

that is widely used in software development. The method allows

writing testable Processing programs in Java in an almost normal
way, and enables the resulting programs to run in the same way as

normal Processing programs. Also, the method allows writing test

programs in Java by specifying a set of test methods that group

similar test cases described in terms of assertions. To demonstrate
how the proposed method works for unit-testing event-driven

Processing programs, we present three case studies on testing

whether mouse and key events are correctly handled. In the

second and third case studies, we show, for comparison, incorrect

programs that fail in unit testing.

The rest of this paper is organized as follows. Section 2 describes

previous work related to the proposed method. Section 3 proposes

our method, and Section 4 gives its implementation. Section 5
presents examples of the use of our method, and Section 6

discusses the method. Finally, Section 7 provides conclusions and

future work.

2. RELATED WORK
Unit testing is a test of individual programs or modules in order to
ensure that there are no analysis or programming errors [6]. Unit

testing is widely used in software development in organizations

such as companies [7]. JUnit [8][9] is a unit testing tool that is

widely used for the development of Java programs.

Unit testing is used for graphical user interfaces based on event-

driven programming. For example, jfcUnit [10] and Abbot [11]

are tools for unit testing for graphical user interfaces constructed

in Java. They allow generating events for graphical user interfaces
and writing test programs that test internal states. Such methods

for testing graphical user interfaces are called script-based

methods [12].

In addition to script-based methods, graphical user interface
testing methods such as model-based and capture/replay methods

have been studied. GUITAR [12] is a model-based method for

testing graphical user interfaces; it allows testing graphical user

interfaces by generating test cases based on models of events

described with graphs.

There is a tutorial on the use of unit testing for Processing [13].

The tutorial uses unit testing for the test-driven development [14]

of functions that are defined in Processing programs. However,
unlike the method that we propose in this paper, this tutorial does

not treat event handlers.

3. PROPOSED METHOD
In this section, we propose a method for unit-testing event-driven

programs that are written in Processing. Our method allows
writing test programs in Java. As with many other unit testing

tools, it allows specifying a set of test methods that group similar

test cases. Also, it allows specifying a test case in terms of an

assertion. Such an assertion is typically defined as follows:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ESSE 2020, November 6–8, 2020, Rome, Italy.

© 2020 ACM. ISBN. 978-1-4503-7678-5/20/11…$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ESSE2020, https://doi.org/10.1145/3393822.3432338

(1) First, create an instance of the main class of the target

Processing program, and call its startTest method;

(2) Call a sequence of methods that send events to the main

Processing instance, recording its internal states at the same

time;

(3) Finally, check whether the recorded internal states satisfy a

necessary condition.

Our method allows writing testable Processing programs in Java
in an almost normal way. Its difference from the normal way is

that our method needs to define main programs as subclasses of

class PTestableApplet while the normal way of writing

Processing programs in Java [15] needs to define them as

subclasses of class PApplet. PTestableApplet is a subclass of

PApplet that is able to perform necessary functions for

Processing programs; when executed with the static main method,

the programs run in the same way as normal Processing programs.
Figure 1 and Figure 2 show a testable Processing program and its

test program respectively that we will use for a case study in

Subsection 5.1.

To realize our method, PTestableApplet introduces two modes,

normal and test. When executed with the static main method, it

runs in the normal mode; in this mode, it simply calls PApplet’s

methods to make it behave in the same way as normal Processing

programs. By contrast, when called with the startTest method

by a test program, it starts the test mode; in this mode, it simulates
Processing’s execution by generating events that are specified in

the test program and then calling the corresponding event handlers

that can be defined in the target Processing program.

 1: public class SimpleButton
 extends PTestableApplet {
 2: boolean toggle = false;
 3: public void settings() {
 4: size(400, 400);
 5: }
 6: public void draw() {
 7: background(toggle ? 0 : 255);
 8: fill(0xff0000ff);
 9: rect(175, 175, 50, 50);
10: }
11: public void mousePressed() {
12: if (mouseX >= 175 && mouseY >= 175 &&
 mouseX < 225 && mouseY < 225) {
13: toggle = !toggle;
14: }
15: }
16: public static void main(String[] args) {
17: SimpleButton.main("SimpleButton");
18: }
19: }

Figure 1: Example of a testable Processing program: a correct

implementation of a simple graphical button.

4. IMPLEMENTATION
By using the proposed method, we implemented a prototype

system in Java with AdoptOpenJDK 1.8.0_232-b09. We used the

core.jar library of Processing 3.5.3 to execute the normal mode

of the proposed method and to obtain necessary information for

the test mode. We used JUnit 5.5.2 for unit testing.

5. CASE STUDIES
In this section, we present three case studies to demonstrate how

the proposed method works.

 1: import static org.junit.jupiter.api.
 Assertions.assertTrue;
 2: import org.junit.jupiter.api.Test;
 3: public class SimpleButtonTest {
 4: @Test
 5: public void testPressButton() {
 6: assertTrue(() -> {
 7: SimpleButton button =
 new SimpleButton();
 8: button.startTest();
 9: boolean toggle0 = button.toggle;
10: button.moveMouse(
 200, 200, 1); // move to button
11: button.pressMouse();
12: button.pass(1); // do nothing
13: button.releaseMouse();
14: button.pass(1); // do nothing
15: return !toggle0 && button.toggle;
16: });
17: }
18: @Test
19: public void testPressOutsideOfButton() {
20: assertTrue(() -> {
21: SimpleButton button =
 new SimpleButton();
22: button.startTest();
23: boolean toggle0 = button.toggle;
24: button.moveMouse(
 300, 300, 1); // move to outside
25: button.pressMouse();
26: button.pass(1); // do nothing
27: button.releaseMouse();
28: button.pass(1); // do nothing
29: return !toggle0 && !button.toggle;
30: });
31: }
32: }

Figure 2: Example of a test program for Processing: a test

program for the simple graphical button.

5.1 Simple Graphical Button
The first case study treats a simple graphical button. As shown in
Figure 3(a), it draws a blue square at the center of the window.

When it is normally clicked with a mouse, it changes the

background color of the window; specifically, the background is

toggled either from white to black or from black to white.

(a) (b)

Figure 3: Event-driven programs used in the case studies: (a)

a graphical button; (b) an object movable with keys.

Figure 1 shows a correct implementation of this simple button in

Processing. It declares a Boolean-type instance variable toggle,

which indicates whether the current background color is black or
white. In the draw method (lines 6–10), the program first clears

the window by using the current background color, and then

draws and fills a square with blue. (The draw method is an event

© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ESSE2020, https://doi.org/10.1145/3393822.3432338

handler that is repeatedly called by Processing every 1/60 seconds

to draw the screen.)

Method mousePressed is an event handler that we test in this

case study. In Processing, mousePressed is called when a mouse

button is pressed. In this program, mousePressed (lines 11–15)

changes the value of toggle if the mouse button is released

inside the square.

Figure 2 shows a test program that performs unit testing for the

simple button. Methods testPressButton and

testPressOutsideOfButton are test methods, where

assertTrue is used for assertions that require their arguments to

take true values. In both methods, the initial value of toggle is

recorded in variable toggle0. testPressButton (lines 5–17)

specifies the following events: first, the mouse cursor is moved to

the center of the square in 1 second; then, the mouse button is

pressed; after passing 1 second without any inputs (even during

which the draw method is repeatedly called every 1/60 seconds),
the mouse button is released; finally, another 1 second is passed

again without any inputs. In this case, the button click should be

accepted (and change the value of toggle), and therefore

testPressButton checks that toggle0 is false, and that the

final value of toggle is true. By contrast,

testPressOutsideOfButton (lines 19–31) specifies events

that should not cause a button click. Therefore,

testOutsideOfButton checks that both toggle0 and the final

value of toggle are false.

We executed our prototype system to apply this test program to
the correct implementation of the simple button shown in Figure 1.

The system reported that the two test methods passed successfully.

5.2 Cancelable Graphical Button
The second case study treats a cancelable graphical button.

Similar to the previous one, it draws a blue square at the center of
the window. Also, it changes the background color of the window

when it is normally clicked with a mouse. In addition, it supports

the “cancel” operation of the button click; if the mouse cursor
goes to the outside of the square without the release of the mouse

button, it ignores the button click (i.e., does not toggle the

background color). It should be noted that such a cancel operation

is commonly supported by buttons that appear in ordinary

graphical user interfaces.

Figure 4 shows a correct implementation of the cancelable button.

It declares a Boolean-type instance variable buttonPressed in

addition to toggle: buttonPressed is introduced to present a

feedback about whether the graphical button is being pressed or
not. In the draw method (lines 7–11), the program first clears the

window by using the current background color, and then draws

and fills a square with either red (if the button is being pressed) or

blue (otherwise).

This case study tests method mouseReleased as well as

mousePressed; mouseRelased is an event handler that is

called when a mouse button is released. In this program,

mousePressed (lines 12–14) assigns true to buttonPressed if

the mouse cursor is inside the square and false otherwise. Note

that, unlike the previous case study, it does not immediately

change the value of toggle since this operation might be

canceled. Instead, mouseReleased (lines 15–20) changes the

value of toggle if the mouse button is released inside the square.

If the mouse button is released outside the square, it does not

change the value of toggle, which means that the button click is

canceled.

 1: public class CancelableButton
 extends PTestableApplet {
 2: boolean toggle = false;
 3: boolean buttonPressed = false;
 4: public void settings() {
 5: size(400, 400);
 6: }
 7: public void draw() {
 8: background(toggle ? 0 : 255);
 9: fill(buttonPressed ? 0xffff0000 :
 0xff0000ff);
10: rect(175, 175, 50, 50);
11: }
12: public void mousePressed() {
13: buttonPressed =
 mouseX >= 175 && mouseY >= 175 &&
 mouseX < 225 && mouseY < 225;
14: }
15: public void mouseReleased() {
16: if (buttonPressed &&
 mouseX >= 175 && mouseY >= 175 &&
 mouseX < 225 && mouseY < 225) {
17: toggle = !toggle;
18: }
19: buttonPressed = false;
20: }
21: public static void main(String[] args) {
22: CancelableButton.main(
 "CancelableButton");
23: }
24: }

Figure 4: Correct implementation of the cancelable graphical

button.

 1: import static org.junit.jupiter.api.
 Assertions.assertTrue;
 2: import org.junit.jupiter.api.Test;
 3: public class CancelableButtonTest {
 4: @Test
 5: public void testPressButton() {
 ...
17: }
18: @Test
19: public void testPressOutsideOfButton() {
 ...
31: }
32: @Test
33: public void testCancelButton() {
34: assertTrue(() -> {
35: CancelableButton button =
 new CancelableButton();
36: button.startTest();
37: boolean toggle0 = button.toggle;
38: button.moveMouse(
 200, 200, 1); // move to button
39: button.pressMouse();
40: button.moveMouse(
 300, 300, 1); // move to outside
41: button.releaseMouse();
42: button.pass(1); // do nothing
43: return !toggle0 && !button.toggle;
44: });
45: }
46: }

Figure 5: Test program for the cancelable graphical button.

Figure 5 shows a test program that performs unit testing for the

cancelable button. Methods testPressButton and

testPressOutsideOfButton are the same test methods as

those in the previous case study (and therefore are not shown

here). The additional method testCancelButton (lines 33–45)

© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ESSE2020, https://doi.org/10.1145/3393822.3432338

specifies events that should cause the cancel of the button click by
moving the mouse cursor to the outside of the square before the

mouse button is released. Therefore, testCancelButton checks

that both toggle0 and the final value of toggle are false.

We executed our prototype system to apply this test program to

the correct implementation of the cancelable button shown in
Figure 4. The system reported that the three test methods passed

successfully.

For comparison, we applied the same test program to the

implementation of the simple button shown in Figure 1 (after
renaming its class name), which we introduced in the previous

case study. Our prototype system reported that

testPressButton and testPressOutsideOfButton

succeeded, but that testCancelButton failed, which was the

expected result.

5.3 Object Movable with Keys
The third case study treats a graphical object that can be moved

with arrow keys. As shown in Figure 3(b), it draws a blue circle

initially at the center of the window. While arrow keys are being
pressed, the circle continuously moves to the direction

corresponding to the pressed arrow keys. The important point is

that it supports the simultaneous press of multiple arrow keys; for

example, while the right and up arrow keys are being
simultaneously pressed, the circle continuously moves to the

upper right direction. It should be noted that such movement of a

graphical object is commonly supported by video games.

Figure 6 shows a correct implementation of the movable object in

Processing. It declares four integer-type instance variables x, y,

vx, and vy: x and y indicate the coordinates of the center of the

circle; vx and vy indicate the changes in 1 frame (i.e., 1/60

seconds) that should be made in x and y respectively, which can

be regarded as the “velocity” components of the circle. In the

draw method, the program first clears the window, then updates x

and y, and draws and fills a circle with blue.

Methods keyPressed and keyReleased are event handlers that

we test in this case study. In Processing, keyPressed and

keyReleased are called when a key is pressed and released

respectively. In this program, keyPressed (lines 16–26) assigns

−1 or 1 to vx or vy if the pressed key is an arrow key. Also,

keyReleased (lines 27–33) assigns 0 to vx or vy if the released

key is an arrow key.

Figure 7 shows a test program that performs unit testing for the

movable object. Methods testMoveRight and

testMoveRightUp are test methods. In these methods, the initial

and intermediate values of x and y are recorded in variables such

as x0 and y0. testMoveRight (lines 5–19) specifies the

following events: first, 1 second is passed without any inputs; next,

after the right arrow key is pressed (but not released), 1 second is

passed (during which the object should continuously move to the
right); finally, after the right arrow key is released, 1 second is

passed. By contrast, testMoveRightUp (lines 21–41) specifies

the following events: first, 1 second is passed without any inputs;
next, after the right arrow key is pressed, 0.25 seconds are passed

(during which the object should continuously move to the right);

then, after the up arrow key is pressed, 0.5 seconds are passed

(during which the object should continuously move to the upper
right direction due to the simultaneous press of the two keys);

after the right arrow key is released, 0.25 seconds are passed

(during which the object should continuously move upward);
finally, after the up arrow key is released, 1 second is passed. At

the end of these methods, they check that the past and final values

of x and y satisfy the expected relations.

We executed our prototype system to apply this test program to

the correct implementation of the movable object shown in Figure
6. The system reported that the two test methods passed

successfully.

For comparison, we show an incorrect implementation of the

movable object in Figure 8. It does not define keyPressed and

keyReleased. Instead, in draw (lines 7–22), it uses instance

variable keyPressed, which is presented by Processing as an

alternative way of handling the press of a key. Although the use of

variable keyPressed might seem simple, it does not handle the

simultaneous press of multiple keys. By applying the same test

program to this incorrect implementation, our prototype system

reported that testMoveRight succeeded, but that

testMoveRightUp failed, which was the expected result.

 1: public class Mover extends PTestableApplet {
 2: int x = 200;
 3: int y = 200;
 4: int vx = 0;
 5: int vy = 0;
 6: public void settings() {
 7: size(400, 400);
 8: }
 9: public void draw() {
10: background(255);
11: x += vx;
12: y += vy;
13: fill(0xff0000ff);
14: ellipse(x, y, 50, 50);
15: }
16: public void keyPressed() {
17: if (keyCode == LEFT) {
18: vx = -1;
19: } else if (keyCode == RIGHT) {
20: vx = 1;
21: } else if (keyCode == UP) {
22: vy = -1;
23: } else if (keyCode == DOWN) {
24: vy = 1;
25: }
26: }
27: public void keyReleased() {
28: if (keyCode == LEFT ||
 keyCode == RIGHT) {
29: vx = 0;
30: } else if (keyCode == UP ||
 keyCode == DOWN) {
31: vy = 0;
32: }
33: }
34: public static void main(String[] args) {
35: Mover.main("Mover");
36: }
37: }

Figure 6: Correct implementation of the movable object.

© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ESSE2020, https://doi.org/10.1145/3393822.3432338

 1: import static org.junit.jupiter.api.
 Assertions.assertTrue;
 2: import org.junit.jupiter.api.Test;
 3: public class MoverTest {
 4: @Test
 5: public void testMoveRight() {
 6: assertTrue(() -> {
 7: Mover mover = new Mover();
 8: mover.startTest();
 9: int x0 = mover.x, y0 = mover.y;
10: mover.pass(1); // do nothing
11: int x1 = mover.x, y1 = mover.y;
12: mover.pressKey(Mover.RIGHT);
13: mover.pass(1); // move to right
14: int x2 = mover.x, y2 = mover.y;
15: mover.releaseKey(Mover.RIGHT);
16: mover.pass(1); // do nothing
17: return x1 == x0 && y1 == y0 &&
 x2 > x1 && y2 == y1 &&
 mover.x == x2 && mover.y == y2;
18: });
19: }
20: @Test
21: public void testMoveRightUp() {
22: assertTrue(() -> {
23: Mover mover = new Mover();
24: mover.startTest();
25: int x0 = mover.x, y0 = mover.y;
26: mover.pass(1); // do nothing
27: int x1 = mover.x, y1 = mover.y;
28: mover.pressKey(Mover.RIGHT);
29: mover.pass(0.25f); // move to right
30: int x2 = mover.x, y2 = mover.y;
31: mover.pressKey(Mover.UP);
32: mover.pass(
 0.5f); // move to upper right
33: int x3 = mover.x, y3 = mover.y;
34: mover.releaseKey(Mover.RIGHT);
35: mover.pass(0.25f); // move upward
36: int x4 = mover.x, y4 = mover.y;
37: mover.releaseKey(Mover.UP);
38: mover.pass(1); // do nothing
39: return x1 == x0 && y1 == y0 &&
 x2 > x1 && y2 == y1 &&
 x3 > x2 && y3 < y2 &&
 x4 == x3 && y4 < y3 &&
 mover.x == x4 && mover.y == y4;
40: });
41: }
42: }

Figure 7: Test program for the movable object.

6. DISCUSSION
As shown in the previous section, the proposed method allows

unit testing for event handlers in Processing programs that are

written in the almost normal way. In addition, the proposed

method allows writing test programs that checks whether the
internal states of Processing programs appropriately change, by

generating events that correspond to common Processing events

such as the motion of a mouse cursor and the press or release of a

mouse button. Understanding such test programs does not require
difficult knowledge for novice programmers who are the main

target of the programming education using Processing. Therefore,

we think that the proposed method also is applicable to the

education of novice programmers.

 1: public class Mover extends PTestableApplet {
 2: int x = 200;
 3: int y = 200;
 4: public void settings() {
 5: size(400, 400);
 6: }
 7: public void draw() {
 8: background(255);
 9: if (keyPressed) {
10: if (keyCode == LEFT) {
11: x -= 1;
12: } else if (keyCode == RIGHT) {
13: x += 1;
14: } else if (keyCode == UP) {
15: y -= 1;
16: } else if (keyCode == DOWN) {
17: y += 1;
18: }
19: }
20: fill(0xff0000ff);
21: ellipse(x, y, 50, 50);
22: }
23: public static void main(String[] args) {
24: Mover.main("Mover");
25: }
26: }

Figure 8: Incorrect implementation of the movable object.

When executed in the test mode, the current prototype system
performs unit testing without displaying a screen. Also, it

repeatedly calls the draw method in a virtual internal time, instead

of calling it every 1/60 seconds in real time. In the case of usual

unit testing, this is faster and more convenient. However, when a
new test program is constructed, or when unit testing is used for

the purpose of education as previously described, it will be better

to enable the execution of a test program while displaying a

screen in real time.

For our prototype system, we adopted the way of writing

Processing programs in Java [15]. However, the widely used Java-

based Processing system [4] uses a specialized development

environment called the Processing Development Environment
(PDE) that allows directly writing event handlers without

explicitly using class PApplet, which is more convenient for

novice programmers. To enable our system to adopt this way of

writing Processing programs, we need to extend PDE.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a method for unit-testing event-driven

programs written in Processing. It allows writing testable
Processing programs and test programs in Java. We showed three

case studies to demonstrate the proposed method.

Our future work includes the confirmation of the utility of the

proposed method for more complex event-driven programs. Other
future directions are to enable screens to be displayed during the

test mode and to extend PDE by integrating the proposed method

in order to enhance the usefulness of the proposed method. Also,

we want to expand the proposed method by enabling the
description of event models and the automatic generation of test

cases.

8. ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number

JP17H01726.

© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ESSE2020, https://doi.org/10.1145/3393822.3432338

9. REFERENCES
[1] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and R.

Morris. Event-driven programming for robust software. In

Proc. ACM SIGOPS EW, pages 186–189, 2002.

[2] J. Fischer, R. Majumdar, and T. Millstein. Tasks: Language

support for event-driven programming. In Proc. ACM PEPM,

pages 134–143, 2007.

[3] A. Milicevic, D. Jackson, M. Gligoric, and D. Marinov.

Model-based, event-driven programming paradigm for

interactive web applications. In Proc. ACM Onward!, pages

17–36, 2013.

[4] B. Fry and C. Reas. Processing. https://processing.org/

[5] C. Reas and B. Fry. Processing: Programming for the media

arts. AI Soc., 20(4):526–538, 2006.

[6] ISO/IEC/IEEE. Systems and software engineering—

vocabulary. Intl. Std. 24765, 2017.

[7] P. Runeson. A survey of unit testing practices. IEEE Softw.,

23(4):22–29, 2006.

[8] K. Beck and E. Gamma. Test-infected: Programmers love

writing tests. Java Report, 3(7):37–50, 1998.

[9] P. Louridas. JUnit: Unit testing and coding in tandem. IEEE

Softw., 22(4):12–15, 2005.

[10] M. Caswell, V. Aravamudhan, and K. Wilson. jfcUnit user

documentation, 2004. http://jfcunit.sourceforge.net/

[11] T. Wall. Abbot framework for automated testing of Java GUI
components and programs, 2011.

http://abbot.sourceforge.net/

[12] B. N. Nguyen, B. Robbins, I. Banerjee, and A. M. Memon.

GUITAR: An innovative tool for automated testing of GUI-

driven software. Autom. Softw. Eng., 21(1):65–105, 2014.

[13] A. Timmons. Unit testing and test driven development, 2017.

https://p5js.org/learn/tdd.html

[14] D. Janzen and H. Saiedian. Test-driven development:
Concepts, taxonomy, and future direction. IEEE Comput.,

38(9):43–50, 2005.

[15] B. Fry. Visualizing Data: Exploring and Explaining Data

with the Processing Environment, chapter 8, pages 220–263.

O’Reilly, 2007.

