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SUMMARY In this paper, we extend our framework of speculative
computation in multi-agent systems by introducing default constraints. In
research on multi-agent systems, handling incomplete information due to
communication failure or due to other agents’ delay in communication is
a very important issue. For a solution to this problem, we previously pro-
posed speculative computation based on abduction in the context of master-
slave multi-agent systems and gave a procedure in abductive logic program-
ming. In our previous proposal, a master agent prepares a default value for a
yes/no question in advance, and it performs speculative computation using
the default without waiting for a reply to the question. This computation
is effective unless the contradictory reply to the default is returned. In this
paper, we formalize speculative constraint processing, and propose a cor-
rect operational model for such computation so that we can handle not only
yes/no questions, but also more general types of questions.
key words: agents, speculative computation, constraints

1. Introduction

In most of current research on multi-agent systems, people
assume that communication of agents is guaranteed. Also,
when an agent asks a question of other agents, a process
is suspended until some response from other agents is ob-
tained. However, in real settings such as the Internet, this
assumption is not guaranteed. Moreover, even if communi-
cation is guaranteed, when an agent needs to communicate
with other agents and the computation in other agents takes
much time before sending an answer, we encounter a similar
situation.

For problem solving in the above situations, we pre-
viously proposed speculative computation [1] based on ab-
duction. When communication is delayed or failed, we use a
default hypothesis as a tentative answer, and continue com-
putation. When some response is obtained, we check the
consistency of the response with the default. If the response
is consistent, then we continue the current computation; else
if the response is inconsistent, we perform an alternative
computation. This is desirable in the situation where some
action should be taken in advance although a complete plan
cannot be decided because of incompleteness of informa-
tion.

In [1], we proposed an implementation of specula-
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tive computation for a master-slave multi-agent system and
showed that abduction plays an important role in speculative
computation.

As an example of speculative computation, consider
the following meeting room reservation problem.

• There are three persons A, B, and C to attend a meeting
during days 1, 2, and 3.

• If a person is available on a day, then he/she will attend
the meeting on the day.

• We ask each person on which day he/she is free or busy.
• If all the persons are available on the same day, we can

reserve a large room for the day.
• If only two persons are available on the same day, we

can reserve a small room for the day.

Our task is to make a plan of possible meeting room reser-
vation for days 1, 2 and 3. We assume that there is a con-
siderable difference between a small room and a large room,
and therefore we have to choose either of them.

Suppose that we receive an answer from A that A is free
on day 1 and day 2 and busy on day 3, and an answer from
B that B is free on day 2 and day 3 and busy on day 1, and
also suppose that an answer from C is delayed.

If we follow the requirement that the communication
must be completed before we take any further action, then
we cannot make any reservation until we get an answer from
C. In ordinary life, however, if we know that C is normally
free on a specific day, then we can tentatively make a conclu-
sion. For example, suppose that we know that C is normally
free on day 2 and day 3. Then, we could make a reservation
of the large room for day 2 if we decide to have a meeting
on day 2, or make a reservation of the small room for day 3
if we decide to have a meeting on day 3.

In the previous framework, we can only ask a yes/no
question, so we have to make a question of availability for
each day. However, it is more efficient if we ask available
days in one question.

In this paper, to solve the problem, we propose specu-
lative constraint processing by introducing constraints into
our framework so that we can ask other agents about possi-
ble values or constraints of questions (such as available days
in the previous example).

The basic idea of this method is as follows.

1. The agent M prepares a default constraint for variables
in a question in advance.

2. When an agent M asks a question of another agent S ,

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



HOSOBE et al.: AGENT-BASED SPECULATIVE CONSTRAINT PROCESSING
1355

the agent M uses the default constraint as a tentative an-
swer and continues a computation along with the ten-
tative answer.

3. When the response comes from the agent S , one of the
following is performed.

• If the response entails the default answer, then the
agent M continues the computation.

• If the response is inconsistent with the default an-
swer, the agent M withdraws the computation pro-
cess which uses the default answer, and then M
restarts a computation with the true answer.

• If the response does not entail the default answer,
but is consistent with the default answer (that is,
the conjunction of the response and the default
answer is satisfiable), M continues the computa-
tion which uses the default, and simultaneously
M starts alternative computation as well.

We assume that the default answer is prepared to cover
the normal answer of each agent. This means that the re-
sponse usually entails the default answer. We, therefore, ex-
pect that the computation which uses the default answer is
usually effective.

Unlike the case of yes/no questions, however, we must
consider the above third case. In the case of yes/no ques-
tions, the response either entails the default or is inconsis-
tent with the default. On the other hand, in our extended
setting, there is a possibility that the response neither entails
the default nor contradicts with the default. In this case, we
must consider both of the computations one of which uses
the default and the other of which does not use the default.

In this paper, we restrict our attention to a master-slave
multi-agent system. In this system, only the master agent
performs speculative computation.

The rest of this paper is organized as follows. Section 2
describes related research. Section 3 provides a framework
of constraint processing in master-slave systems. Section 4
introduces a speculative framework in master-slave systems.
Section 5 proposes an operational model for speculative
constraint processing, and illustrates the effect of specula-
tive computation by an example. Section 6 proves the cor-
rectness of the operational model. Section 7 discusses the
proposed framework. Finally, Section 8 mentions the con-
clusions and future work of this research.

2. Related Research

In computer science, there are studies on speculative com-
putation such as optimistic transaction in databases, three-
phase transition in fault-tolerant systems, efficient execu-
tion mechanisms for functional programming [2] and par-
allel logic programming [3]. We were inspired by some of
these studies, and our work is regarded as an application of
the above techniques to multi-agent systems.

There is research on constraint processing in concur-
rent environments [4] and distributed environments [5]. In
particular, some work on agent-based distributed constraint

processing handles meeting scheduling as a problem exam-
ple. For instance, in [6], Hassine et al. use dynamic valued
constraint satisfaction problems to allow modeling prefer-
ences of users and dynamic changes of problems, which
they apply to meeting scheduling. Also, in [7], Wallace and
Freuder discuss multi-agent constraint processing that keeps
other agents’ privacy as much as possible, which they illus-
trate with the meeting schedule problem. In this sense, their
work is applicable to the same problem domain as our work.
However, to our knowledge, such work on agent-based dis-
tributed constraint processing adopts the Constraint Satis-
faction Problem (CSP) framework, whereas we employ the
Constraint Logic Programming (CLP) framework. This
causes fundamental differences between our and their work.
The most fundamental difference is that CLP generates a set
of CSPs in the process of executing a program. By contrast,
in the CSP framework, problems are specified by an exter-
nal entity such as a user (rather than by a program). There-
fore, the CLP framework needs to maintain more complex
information such as states of program execution. However,
this additional complexity also gives more power to the CLP
framework. For example, in the case of meeting scheduling,
the CLP framework allows a program to generate different
CSPs in different situations. Thus CLP allows richer spec-
ification of problems. Moreover, in this paper, we integrate
speculative computation into CLP, by which we allow the
master agent to do non-stop execution of programs by using
default constraints, which is impossible in the case of the
ordinary (non-speculative) CLP framework.

There is work on asynchronous algorithms for agent-
based constraint processing. For example, [5] presents two
algorithms called asynchronous backtracking and the asyn-
chronous weak-commitment search for solving distributed
CSPs. Also, [8] provides an asynchronous algorithm called
Adopt for distributed constraint optimization. Such asyn-
chronous algorithms allow agents to perform computation
by using data that may be overridden in the future. There-
fore, in a sense, their asynchronous operations are similar to
speculative computation in our work. However, there is an
essential difference between them. In such asynchronous al-
gorithms, asynchronous operations are executed in the pro-
cess of solving constraint problems, and asynchronism is
purely a solving aspect. By contrast, in our work, specula-
tiveness is associated with the master agent’s execution of a
program, which allows the programmer to control specula-
tive computation (in fact, the programmer can disable spec-
ulative computation by providing no default constraints).
This indicates that our speculative computation involves a
modeling aspect as well as a solving aspect. Also, it should
be noted that the CSP framework does not have the notion of
programs, and therefore cannot introduce speculative com-
putation in the same way as our framework.

Most related research to our work would be constraint
programming languages such as AKL (Andorra Kernel Lan-
guage) [9] and Oz [10], [11] which perform a kind of spec-
ulative computation. AKL allows local speculative variable
bindings in a guard of each clause until one of guards suc-
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ceeds and Oz can control multiple computation spaces each
of which represents an alternative path of constraint process-
ing. As far as we understand, however, speculative compu-
tation used in these languages is mainly motivated for or-
parallel computing where multiple paths of computation are
executed in parallel until one of the paths succeeds eventu-
ally. On the other hand, we regard speculative computation
as default computation where most plausible paths of com-
putation are executed. Moreover, they do not consider the
usage of speculative computation for incomplete communi-
cation environments. However, we believe that Oz and AKL
could be good platforms for implementation of speculative
computation using defaults.

After the original work [1] of speculative computation
in multi-agent systems was proposed, related research to
speculative computation has been published [12]–[15]. [12]
gives a local semantics of an agent by translating a program
into another program where a time stamp is attached with
each predicate. The revision of each agent is formalized as
overriding the truth value of the predicate with the previous
time stamp by the truth value of the predicate with the new
time stamp. [13] gives a bottom-up evaluation of specula-
tive computation by calculating every answer w.r.t. possible
replies. [14] generalizes speculative computation for belief
revision on the fly where belief revision occurs during rea-
soning, and [15] extends the master-slave setting to more
general multi-agent systems.

3. Framework of Constraint Processing in Master-
Slave Systems

In this section, we firstly provide a framework of constraint
handling in a master-slave system. The framework follows
the Constraint Logic Programming (CLP) framework.

Definition 1: A constraint framework for a master-slave
system is a pair 〈Σ,P〉 where

• Σ is a finite set of constants, each of which is called a
slave agent identifier; when Q is an atom and S is a
slave agent identifier, we call Q@S an askable atom;

• P is a constraint logic program, that is, a set of rules in
the form

H ← C ‖ B1, B2, . . . , Bn

where

– H is an atom called head of the above rule R de-
noted as head(R);

– C is a set of constraints called body constraints of
R denoted as const(R);

– each of B1, . . . , Bn is either an atom or an askable
atom and we refer to B1, . . . , Bn as body of R de-
noted as body(R).

Example 1: The example of meeting room reservation in
Sect. 1 (without speculative computation) is represented as
the following framework 〈Σ,P〉 with set constraints.

• Σ = {a, b, c}.
• P is the following set of rules:†

plan(small room, [X, Y],D)←
D ∈ {1, 2, 3} ‖ meeting([X, Y],D).

plan(large room, [a, b, c],D)←
D ∈ {1, 2, 3} ‖ meeting([a, b, c],D).

meeting([a, b],D)←
‖ available(a,D), available(b,D),
non available(c,D).

meeting([b, c],D)←
‖ non available(a,D), available(b,D),
available(c,D).

meeting([c, a],D)←
‖ available(a,D), non available(b,D),
available(c,D).

meeting([a, b, c],D)←
‖ available(a,D), available(b,D),
available(c,D).

available(P,D)← ‖ f ree(D)@P.
non available(P,D)← ‖ busy(D)@P.

The definition of the execution of the above framework
is straightforwardly adapted from that of the usual CLP
framework, and is as follows. For a non-askable atom in
a goal, we reduce it into subgoals by the above rule and for
an askable atom in a goal, a master agent asks a slave agent a
query with the current constraints and waits for the answer.
The answer is returned as a set of constraints on variables in
the query. When the answer constraints are returned, they
are added into the current constraints and the execution is
resumed. The execution is completed when an empty goal
is found.

Definition 2: A goal is in the form

← C ‖ B1, . . . , Bn

where

• C is a set of constraints;
• each of B1, . . . , Bn is either an atom or an askable atom.

For a semantics of the above framework, we handle an
askable atom as if we knew the reply for a question in the
askable atom beforehand.

Definition 3: A reply set is a set of rules in the form
Q@S ← C ‖ where Q@S is an askable atom and each ar-
gument of Q is a variable and C is a set of constraints over
those variables.

Note that a reply set is not necessarily specified for every
askable atom. If a reply set is not specified for an askable
atom, we regard an answer for the askable atom as unde-
cided.

Definition 4: A reduction of a goal← C ‖ B1, . . . , Bn w.r.t.

†A string beginning with an upper case letter represents a vari-
able and a string beginning with a lower case letter represents a
constant.
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a constraint logic program P, a reply set R and a subgoal Bi

is a goal← C′ ‖ B′ s.t.

• there is a rule R in P ∪ R s.t. C ∧ {Bi = head(R)} ∧
const(R) is consistent, where {Bi = head(R)} is a con-
junction of constraints equating the arguments of atoms
Bi and head(R);

• C′ = C ∧ {Bi = head(R)} ∧ const(R);
• B′ = {B1, . . . Bi−1, Bi+1, . . . , Bn} ∪ body(R).

Definition 5: A derivation of a goal← C ‖ B1, . . . , Bn w.r.t.
a constraint framework 〈Σ,P〉 and a reply set R is a sequence
of reductions ← C ‖ B1, . . . , Bn,. . . ,← C′ ‖ ∅ w.r.t. P and R
where ∅ denotes an empty goal. C′ is called an answer con-
straint w.r.t. the goal, the framework and the reply set.

Example 2: Suppose that a reply set is the following:
f ree(D)@a← D ∈ {1} ‖ .
busy(D)@a← D ∈ {2, 3} ‖ .
f ree(D)@b← D ∈ {2, 3} ‖ .
f ree(D)@c← D ∈ {1, 3} ‖ .
busy(D)@c← D ∈ {2} ‖ .

Then, we have R = small room, L = [X, Y], X = b,
Y = c, D ∈ {3} as an answer constraint w.r.t. a goal
← ‖ plan(R, L,D), and the above framework and the above
reply set. Note that we cannot conclude R = small room,
L = [X, Y], X = c, Y = a, D ∈ {1} since there is no informa-
tion on busy(D)@b.

4. Framework of Speculative Constraint Processing in
Master-Slave Systems

Now we extend the constraint framework to perform a spec-
ulative computation.

Definition 6: A speculative framework for a master-slave
system S FMS is a triple 〈Σ,Δ,P〉 where

• Σ and P are the same as in the constraint framework;
• Δ is a set of rules in the form

Q@S ← C ‖
called default rule w.r.t. Q@S , where Q@S is an ask-
able atom and C is a set of constraints called default
constraint for Q@S ; we denote a default rule w.r.t.
Q@S as δ(Q@S ).

In the above definition an askable atom is used for two
purposes. One is for a question sent by a master agent to
a slave agent and the other is for a specification of default
constraints. If there is no replies returned already for an
askable atom, we use a default constraint for the askable
atom as a tentative answer from the other agents.

Example 3: The example of meeting room reservation in
Sect. 1 is represented as the following speculative frame-
work S FMS = 〈Σ,Δ,P〉, with the set constraints meaning
that a is expected to be free on days 1 and 2 and busy on day
3, b is expected to be free on days 1 and 3, and c is expected
to be free on day 3 and busy on day 2.

• Σ and P are the same as in Example 1.
• Δ is the set of the following rules:

f ree(D)@a← D ∈ {1, 2} ‖ .
busy(D)@a← D ∈ {3} ‖ .
f ree(D)@b← D ∈ {1, 3} ‖ .
f ree(D)@c← D ∈ {3} ‖ .
busy(D)@c ← D ∈ {2} ‖ .

5. Operational Model for Speculative Constraint
Processing

In this section, we propose an operational model of specu-
lative computation. The execution of the speculative frame-
work is based on two phases, the process reduction phase
and the fact arrival phase. The process reduction phase is
a normal execution of a program in a master agent and the
fact arrival phase is an interruption phase when an answer
arrives from a slave agent.

An active process consists of the following objects; (a)
the current status of computation including the current con-
straint set and (b) a set of askable atoms which have been
reduced already. Each process represents an alternative way
of computation. Intuitively, processes are created when a
choice point of computation is encountered such as case
splitting or default handling. An active process ends suc-
cessfully if all the computation is done and the constraints
associated with reduced askable atoms have not been contra-
dictory with the current reply set. A process fails when some
used default constraints are found to contradict the newly re-
turned answer.

In the process reduction phase, we reduce an active
process set (see Definition 9 for the formal definition) into
a new process set. During the reduction, for a process using
a default constraint, the default is assumed unless an incon-
sistent constraint with the default has already been assumed
or found to be true, whereas a process will be killed when
the default used in the process contradicts the current con-
straint. When we start a speculative computation using the
default value, we create another process to keep alternative
computation which does not use the default value. We sus-
pend this alternative process since the probability of failure
of the alternate process is high.

When an answer comes from a slave agent, we consider
the following three possibilities.

• If the answer entails the default, we continue the pro-
cess using the default and remove the alternative sus-
pended process which was created when a speculative
computation starts.

• If the answer contradicts the default, we remove pro-
cesses using the default and resume the alternative sus-
pended processes.

• If the answer does not entail the default, but is consis-
tent with the default, we not only continue the process
using the default by adding the returned answer, but
also resume the alternative process.
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Initial Step: Let GS be an initial goal set. We give 〈← ‖GS , ∅〉 to a proof procedure; that is, APS = {〈← ‖GS , ∅〉}. Let S PS = AAQ =
RF = ∅.
Iteration Step: Do the following.

Case 1: If there is an active process 〈← C ‖ ∅, AD〉, then output constraints C and a set of assumed askable atoms which is in AD and is not
in HEAD(RF) where HEAD(RF) = {head(R) |R ∈ RF}.
Case 2: Otherwise, select an active process 〈← C ‖GS , AD〉 from APS and select an atom L in GS . Let APS ′ = APS − {〈← C ‖GS , AD〉}
and GS ′ = GS − {L}. For the selected atom L, do the following.

• If L is a non-askable atom, then
NewAPS = APS ′ ∪
{〈← (C ∧ {Bi = head(R)} ∧ const(R)) ‖(body(R) ∪GS ′), AD〉 |C ∧ {Bi = head(R)} ∧ const(R) is consistent}.

• If L is an askable atom Q@S , then do the following.

– If L � AAQ, then send a question Q to a slave agent S and let NewAAQ = AAQ ∪ {L}.
– If L ∈ AD, then NewAPS = APS ′ ∪ {〈← C ‖GS ′, AD〉}.
– Else if (L← Cr ‖) ∈ RF, then do the following.

∗ If C ∧Cr is consistent, then NewAPS = APS ′ ∪ {〈← C ∧Cr ‖GS ′, AD〉}
else NewAPS = APS ′.

– Else if a default constraint Cd for L exists, then do the following.

∗ If C ∧Cd is consistent, then NewAPS = APS ′ ∪ {〈← C ∧ Cd ‖GS ′, AD ∪ {L}〉}
else NewAPS = APS ′.

∗ If C ∧ ¬Cd is consistent, then NewS PS = S PS ∪ {〈L,← C ∧ α ‖GS ′, AD〉} where C ∧ ¬Cd |= α.

Fig. 1 Process reduction phase.

Let NewRF = RF ∪ {Q@S ← Cr ‖}. If a default constraint Cd for Q@S exists, then do the following.

• If Cr entails Cd , then do the following.

– NewAPS = APS − DeletedAPS ∪ AddedAPS
where DeletedAPS = {〈← C ‖GS , AD〉 ∈ APS |Q@S ∈ AD}
and AddedAPS = {〈← C ∧ Cr ‖GS , AD〉 | 〈← C ‖GS , AD〉 ∈ DeletedAPS and C ∧Cr is consistent}.

– NewS PS = S PS − DeletedS PS ∪ AddedS PS
where DeletedS PS = {〈S G,← C ‖ GS , AD〉 ∈ S PS | S G = Q@S or Q@S ∈ AD}
and AddedS PS = {〈S G,← C ∧Cr ‖GS , AD〉 |

〈S G,← C ‖GS , AD〉 ∈ DeletedS PS and Q@S ∈ AD and C ∧Cr is consistent}.
• If Cr contradicts Cd , then do the following.

– NewAPS = APS − DeletedAPS ∪ ResumedS PS
where DeletedAPS = {〈← C ‖GS , AD〉 ∈ APS |Q@S ∈ AD}
and ResumedS PS = {〈← C ∧Cr ‖GS , AD〉 | 〈Q@S ,← C ‖GS , AD〉 ∈ S PS and C ∧Cr is consistent}.

– NewS PS = S PS − DeletedS PS
where DeletedS PS = {〈S G,← C ‖GS , AD〉 ∈ S PS | S G = Q@S or Q@S ∈ AD}.

• If Cr does not entail Cd nor contradicts Cd , then do the following.

– NewAPS = APS − DeletedAPS ∪ AddedAPS ∪ ResumedS PS
where DeletedAPS = {〈← C ‖GS , AD〉 ∈ APS |Q@S ∈ AD}
and AddedAPS = {〈← C ∧ Cr ‖GS , AD〉 | 〈← C ‖GS , AD〉 ∈ DeletedAPS and C ∧Cr is consistent}
and ResumedS PS = {〈← C ∧Cr ‖GS , AD〉 | 〈Q@S ,← C ‖GS , AD〉 ∈ S PS and C ∧Cr is consistent}.

– NewS PS = S PS − DeletedS PS ∪ AddedS PS
where DeletedS PS = {〈S G,← C ‖ GS , AD〉 ∈ S PS | S G = Q@S or Q@S ∈ AD}
and AddedS PS = {〈S G,← C ∧Cr ‖GS , AD〉 |

〈S G,← C ‖GS , AD〉 ∈ DeletedS PS and Q@S ∈ AD and C ∧Cr is consistent}.
Fig. 2 Fact arrival phase.

5.1 Preliminary Definitions

We define the following objects for process reduction.

Definition 7: An active process is a pair 〈← C ‖GS , AD〉
where

• ← C ‖GS is a goal consisting of a set of atoms GS and

a set of constraints C;
• AD is a set of askable atoms assumed already called

assumed askable atoms.

Definition 8: A suspended process is a triple 〈S G,←
C ‖GS , AD〉 where

• S G is an askable atom called a suspended atom;
• ← C ‖GS is a goal;
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1. Active: 〈(← ‖ plan(R, L,D)), ∅〉
2. Active: 〈(← D∈{1, 2, 3},R = small room, L = [X, Y] ‖ plan(small room, [X,Y],D)), ∅〉,

〈(← D∈{1, 2, 3},R = large room, L = [a, b, c] ‖ plan(large room, [a, b, c], D)), ∅〉
3. Active: 〈(← D∈{1, 2, 3},R = small room, L = [X, Y] ‖meeting([X, Y],D)), ∅〉,

〈(← D∈{1, 2, 3},R = large room, L = [a, b, c] ‖ plan(large room, [a, b, c], D)), ∅〉
4. Active: 〈(← D∈{1, 2, 3}, θab ‖ available(a,D), available(b, D), non available(c,D)), ∅〉,

〈(← D∈{1, 2, 3}, θbc ‖ non available(a, D), available(b,D), available(c,D)), ∅〉,
〈(← D∈{1, 2, 3}, θca ‖ available(a,D), non available(b,D), available(c,D)), ∅〉,
〈(← D∈{1, 2, 3}, θabc ‖ plan(large room, [a, b, c], D)), ∅〉

5. Active: 〈(← D∈{1, 2, 3}, θab ‖ f ree(D)@a, available(b,D), non available(c,D)), ∅〉, Pbc, Pca, Pabc

6. f ree(D) is asked of a, and since ( f ree(D)@a ← D∈{1, 2} ‖) ∈ Δ,
Active: 〈(← D∈{1, 2}, θab ‖ available(b,D), non available(c,D)), { f ree(D)@a}〉, Pbc, Pca, Pabc

Suspended: 〈 f ree(D)@a, (← D∈{3}, θab ‖ available(b,D), non available(c,D)), ∅〉
7. Active: 〈(← D∈{1, 2}, θab ‖ f ree(D)@b, non available(c,D)), { f ree(D)@a}〉, Pbc, Pca, Pabc

Suspended: S P1
8. f ree(D) is asked of b, and since ( f ree(D)@b ← D∈{1, 3} ‖) ∈ Δ,

Active: 〈(← D∈{1}, θab ‖ non available(c,D)), { f ree(D)@a, f ree(D)@b}〉, Pbc, Pca, Pabc

Suspended: S P1, 〈 f ree(D)@b, (← D∈{2}, θab ‖ non available(c,D)), { f ree(D)@a}〉
9. Active: 〈(← D∈{1}, θab ‖ busy(D)@c), { f ree(D)@a, f ree(D)@b}〉, Pbc, Pca, Pabc

Suspended: S P1, S P2

10. busy(D) is asked of c, and since (busy(D)@c← D∈{2} ‖) ∈ Δ,
Active: Pbc, Pca, Pabc

Suspended: S P1, S P2, 〈busy(D)@c, (← D∈{1}, θab ‖ ∅), { f ree(D)@a, f ree(D)@b}〉
11. Active: 〈(← D∈{1, 2, 3}, θbc ‖ busy(D)@a, available(b,D), available(c,D)), ∅〉, Pca, Pabc

Suspended: S P1, S P2, S P3

12. busy(D) is asked of a, and since (busy(D)@a ← D∈{3} ‖) ∈ Δ,
Active: 〈(← D∈{3}, θbc ‖ available(b,D), available(c,D)), {busy(D)@a}〉, Pca, Pabc

Suspended: S P1, S P2 , S P3, 〈busy(D)@a, (← D∈{1, 2}, θbc ‖ available(b,D), available(c,D)), ∅〉
13. Active: 〈(← D∈{3}, θbc ‖ f ree(D)@b, available(c,D)), {busy(D)@a}〉, Pca, Pabc

Suspended: S P1, S P2, S P3, S P4
14. Since f ree(D)@b has been asked already, we do not send a question to b. Since ( f ree(D)@b← D∈{1, 3} ‖) ∈ Δ,

Active: 〈(← D∈{3}, θbc ‖ available(c,D)), {busy(D)@a, f ree(D)@b}〉, Pca, Pabc

Suspended: S P1, S P2, S P3, S P4
15. Active: 〈(← D∈{3}, θbc ‖ f ree(D)@c), {busy(D)@a, f ree(D)@b}〉, Pca, Pabc

Suspended: S P1, S P2, S P3, S P4

16. Suppose that f ree(D)@b ← D∈{3} ‖ is returned from b.
Active: 〈(← D∈{3}, θbc ‖ f ree(D)@c), {busy(D)@a, f ree(D)@b}〉, Pca, Pabc

Suspended: S P1, S P4

17. Suppose that busy(D)@a← D∈{2, 3} ‖ is returned from a.
Active: 〈(← D∈{3}, θbc ‖ f ree(D)@c), {busy(D)@a, f ree(D)@b}〉,

〈(← D∈{2}, θbc ‖ available(b,D), non available(c,D)), ∅〉, Pca, Pabc

Suspended: S P1

18. f ree(D) is asked of c, and since ( f ree(D)@c← D∈{3} ‖) ∈ Δ,
Active: 〈(← D∈{3}, θbc ‖ ∅), {busy(D)@a, f ree(D)@b, f ree(D)@c}〉,

〈(← D∈{2}, θbc ‖ available(b,D), non available(c,D)), ∅〉, Pca, Pabc

Suspended: S P1

19. (D∈{3},R = small room, L = [X,Y], X = b, Y = c) is output as an answer constraint, and { f ree(D)@c} as a set of assumed askable
atoms.

Fig. 3 Execution trace for the program in Example 3. Here “R = small room, L = [X, Y], X = a,
Y = b” is denoted as θab, “R = small room, L = [X,Y], X = b, Y = c” as θbc, “R = small room,
L = [X,Y], X = c, Y = a” as θca , “R = large room, L = [a, b, c]” as θabc, 〈(←D∈{1, 2, 3},
θbc ‖ non available(a,D), available(b,D), available(c,D)), ∅〉 as Pbc, 〈(←D∈{1, 2, 3}, θca ‖ available(a,D),
non available(b,D), available(c,D)), ∅〉 as Pca, 〈(←D∈{1, 2, 3}, θabc ‖ plan(large room, [a, b, c], D)), ∅〉
as Pabc, 〈 f ree(D)@a, (←D∈{3}, θab ‖ available(b, D), non available(c,D)), ∅〉 as S P1, 〈 f ree(D)@b,
(←D∈{2}, θab ‖ non available(c, D)), { f ree(D)@a}〉 as S P2, 〈busy(D)@c, (←D∈{1}, θab ‖ ∅), { f ree(D)@a,
f ree(D)@b}〉 as S P3, and 〈busy(D)@a, (←D∈{1, 2}, θbc ‖ available(b,D), available(c,D)), ∅〉 as S P4.

• AD is a set of assumed askable atoms.

We use the following four sets for process reduction.

Definition 9:

• An active process set APS is a set of active processes.
• A suspended process set S PS is a set of suspended pro-

cesses.
• Already asked queries AAQ are a set of askable atoms.
• Returned facts RF are a set of rules in the form

Q@S ← C ‖ where Q@S is an askable atom and C
is a set of constraints.

AAQ is used to avoid asking redundant questions of slave
agents, and RF is a set of true constraints returned from
slave agents about askable atoms and in the form Q@S ←
C ‖ .
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5.2 Process Reduction Phase

Figure 1 shows the procedure for the process reduction
phase. Here we specify changed APS , S PS , AAQ, RF as
NewAPS , NewS PS , NewAAQ, NewRF; otherwise each of
APS , S PS , AAQ, and RF is unchanged.

If the constraint solver can manipulate any logical com-
bination of constraints such as negations and disjunctions,
the constraint α, which is used in this procedure, can be
equivalent to C ∧ ¬Cd. If the solver cannot do so, α might
be a partial constraint weaker than C ∧ ¬Cd or sometimes
no constraint.

5.3 Fact Arrival Phase

Figure 2 gives the procedure for the fact arrival phase. Here
we suppose that a constraint is returned from a slave agent
S for a question Q@S . We denote the returned constraint
as Q@S ← Cr ‖. Then we execute the procedure after one
step of process reduction is finished.

5.4 Example

We illustrate the execution of this operational model, using
the program in Example 3. We take the following strategy
for process reduction.

• When we reduce an atom, new processes are created
along with the rule order in the program which are
unifiable with the atom.

• We always select a newly created or a newly resumed
process and a left-most atom.

Figure 3 shows the execution trace for plan(R, L,D)
based on this strategy. We assume that answers from the
agents b and a come at step 16 and step 17 respectively. We
show changes of active processes and suspended processes
during the execution.

At Step 6, we split a process into two processes; one
active process using a default constraint and one suspended
process using the negation of the default constraint. If we
had to wait for an answer from the agent a, we would have
to suspend this process. This is an effect of speculative com-
putation.

At Step 16, the answer constraint for f ree(D) is re-
turned from b. Since this constraint entails the default con-
straint, nothing changes and we can continue the reduction.
Therefore, in this case we receive a benefit of speculative
computation.

At Step 17, the answer constraint for busy(D) is re-
turned from a. Since this constraint does not entail the
default constraint nor contradicts the default constraint, we
not only continue a process using the default constraint, but
also resume a process using the negation of the default con-
straint. This is the difference between our previous work
and the mechanism proposed in this paper.

6. Correctness of the Operational Model

The following theorem shows the correctness of the opera-
tional model presented in the previous section.

Theorem 1: Let S FMS = 〈Σ,Δ,P〉 be a speculative frame-
work. Let GS init be an initial goal set, AD be a set of
used assumed askable atoms, C be an answer constraint
obtained from the operational model, and RF be a set of
constraints returned from the other agents when the an-
swer is obtained. Then, there exists an answer constraint
C′ w.r.t. the constraint framework 〈Σ,P〉 and the reply set
RF∪{δ(Q@S )|Q@S ∈ AD} s.t. πV (C) entails πV (C′), where
V is the set of the variables that occur in GS init, and πV is the
projection of constraints onto V .

See Appendix for the proof of this theorem.

7. Discussion

Speculative constraint processing requires appropriate de-
fault constraints to obtain good results based on speculative
computation. Therefore, its success relies on problem do-
mains to which it is applied. For example, the problems
of meeting room reservation and meeting scheduling are
promising examples for speculative constraint processing,
since people usually have regular schedules that are appro-
priate to default constraints. However, even if completely
inappropriate default constraints are specified, speculative
constraint processing gives performance comparable to non-
speculative computation. This is because, in such a case,
the fact arrival phase immediately kills the active processes
based on the inappropriate default constraints, and then re-
sumes the suspended processes that have been waiting for
the answer constraints. Note that this is similar to the non-
speculative case because non-speculative computation must
wait for answer constraints without proceeding its compu-
tation process. Also, it should be noted that, when an an-
swer constraint does not entail but is consistent with the
default, speculative constraint processing can immediately
output corrected partial results.

As described in Sect. 1, speculative constraint process-
ing handles more expressive questions than our previous
speculative computation framework that allows only yes/no
questions. However, speculative constraint processing cur-
rently does not support negation as failure that is supported
in the previous yes/no-type framework; in this sense, specu-
lative constraint processing is not a complete generalization
of the yes/no-type framework. Since negation is often use-
ful for modeling problems, it is necessary to further extend
the speculative constraint processing framework to handle
negation as failure.

8. Conclusions and Future Work

The contributions of this paper are as follows.
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• We presented speculative constraint processing in
multi-agent systems.

• We proposed a correct operational model of specula-
tive constraint processing in master-slave multi-agent
systems.

The following issues remain for future research.

• Extensions to other kinds of multi-agent systems such
as the one where every agent can perform speculative
computation.

• Extensions in order to handle negation as failure.
• Decision theoretic analysis on effects of speculative

computation.
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Appendix: Proof of Theorem 1

We show that a more general property holds for any exist-
ing active or suspended process at any “step” in the process
reduction or fact arrival phase. By a “step,” we mean the ex-
ecution of operations in the iteration step part of the process
reduction phase or the whole of the fact arrival phase from
its beginning to its end, without returning to the beginning,
and without transferring to the other phase. Then the prop-
erty that we show is the following: (∗) at any k-th step, for
any process P, there exists a sequence of reductions

“← ‖GS init”, . . . , “← C′P ‖GS P”

w.r.t. P and

R(k)
P = RFk ∪ {δ(Q@S )|Q@S ∈ ADP}

s.t.

πV(CP) entails πV (C′P),

where CP = CPa , GS P = GS Pa , and ADP = ADPa if the
process P is an active process Pa = 〈← CPa ‖GS Pa , ADPa〉,
and CP = CPs , GS P = {S GPs} ∪ GS Ps , and ADP = ADPs

if the process P is a suspended process Ps = 〈S GPs ,←
CPs ‖GS Ps , ADPs〉, and RFk is the set of the returned con-
straints at the k-th step.

Below we prove the property (∗) by induction on the
progress of process reduction and fact arrival steps.

Induction base. In the initial step, an active process
〈← ‖GS init, ∅〉 is created, which satisfies (∗).

Induction step. Assume that, at the k-th step, the prop-
erty (∗) holds.

Now consider the (k + 1)-th step. It is straightforward
to show that (∗) holds for the process reduction phase.

Here we consider the processing of a returned answer
Q@S ← Cr ‖ in the fact arrival phase. Assume that there is
a default constraint Cd for Q@S .

Let Pa = 〈← CPa ‖GS Pa , ADPa〉 be any existing active
process s.t. Q@S ∈ ADPa . Note that Pa is deleted at this
step.

Consider the newly added active process that is created
from Pa. We have the following three cases.

1. Case Cr entails Cd. If CPa ∧ Cr is consistent, the ac-
tive process P′a = 〈← CPa ∧ Cr ‖GS Pa , ADPa〉 is cre-
ated, and we have R(k+1)

P′a
= R(k)

Pa
∪ {Q@S ← Cr ‖} \

{Q@S ← Cd ‖}. By the induction hypothesis, Pa sat-
isfies (∗) for some C′Pa

; that is, there is a sequence of
reductions “← ‖GS init”, . . . , “← C1 ‖{Q@S } ∪ GS ”,
“← C1 ∧ Cd ‖GS ”, . . . , “← C1 ∧ Cd ∧ C2 ‖GS Pa ”
w.r.t. P and R(k)

Pa
s.t. πV (CPa ) entails πV(C1 ∧ Cd ∧ C2),

where C1 and C2 are the constraints obtained before
and after processing Q@S respectively, and C1 ∧Cd ∧
C2 = C′Pa

. Then we can consider the sequence of re-
ductions “← ‖GS init”, . . . , “← C1 ‖{Q@S } ∪ GS ”,
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“← C1 ∧ Cr ‖GS ”, . . . , “← C1 ∧ Cr ∧ C2 ‖GS Pa ”
w.r.t. P and R(k+1)

P′a
. Since Cr entails Cd, and also since

πV (CPa ) entails πV(C1 ∧Cd ∧C2), πV (CPa ∧Cr) entails
πV (C1 ∧Cr ∧C2). Thus (∗) holds for this new process.

2. Case Cr contradicts Cd. No such active process is cre-
ated from Pa.

3. Case Cr does not entail Cd nor contradicts Cd. If CPa ∧
Cr is consistent, an active process is created from Pa,
for which we can show (∗) in a similar way to case 1.

Next, let Ps = 〈S GPs ,← CPs ‖GS Ps , ADPs〉 be any
existing suspended process s.t. S GPs = Q@S or Q@S ∈
ADPs . Note that Ps is deleted at this step.

Consider the newly added active process that is created
from Ps s.t. S GPs = Q@S (which corresponds to the re-
sumed process). We have the following three cases.

1. Case Cr entails Cd. No such active process is created
from Ps.

2. Case Cr contradicts Cd. If CPs∧Cr is consistent, the ac-
tive process P′a = 〈← CPs∧Cr ‖GS Ps , ADPs〉 is created,
and we have R(k+1)

P′a
= R(k)

Ps
∪ {Q@S ← Cr ‖} \ {Q@S ←

Cd ‖}. By the induction hypothesis, Ps satisfies (∗) for
some C′Ps

; that is, there is a sequence of reductions
“← ‖GS init”, . . . , “← C′Ps

‖{Q@S } ∪ GS Ps ” w.r.t. P
and R(k)

Ps
s.t. πV (CPs ) entails πV (C′Ps

). Then we can
consider the sequence of reductions “← ‖GS init”, . . . ,
“← C′Ps

‖{Q@S }∪GS Ps ”, “← C′Ps
∧Cr ‖GS Ps ” w.r.t.P

and R(k+1)
P′a

. Since πV (CPs ) entails πV (C′Ps
), πV (CPs ∧Cr)

entails πV (C′Ps
∧ Cr). Thus (∗) holds for this new pro-

cess.
3. Case Cr does not entail Cd nor contradicts Cd. If CPs ∧

Cr is consistent, an active process is created from Ps,
for which we can show (∗) in a similar way to case 2.

Next, consider the newly added suspended process that
is created from Ps s.t. Q@S ∈ ADPs . We have the following
three cases.

1. Case Cr entails Cd. If CPs ∧ Cr is consistent, the sus-
pended process P′s = 〈S GPs ,← CPs ∧Cr ‖GS Ps , ADPs〉
is created, and we have R(k+1)

P′s
= R(k)

Ps
∪{Q@S ← Cr ‖}\

{Q@S ← Cd ‖}. By the induction hypothesis, Ps satis-
fies (∗) for some C′Ps

; that is, there is a sequence of re-
ductions “← ‖GS init”, . . . , “← C1 ‖{Q@S } ∪GS ”, “←
C1 ∧Cd ‖GS ”, . . . , “← C1 ∧Cd ∧C2 ‖{S GPs} ∪GS Ps ”
w.r.t. P and R(k)

Ps
s.t. πV (CPs ) entails πV(C1 ∧ Cd ∧ C2),

where C1 and C2 are the constraints obtained before
and after processing Q@S respectively, and C1 ∧Cd ∧
C2 = C′Ps

. Then we can consider the sequence of re-
ductions “← ‖GS init”, . . . , “← C1 ‖{Q@S } ∪ GS ”,
“← C1∧Cr ‖GS ”, . . . , “← C1∧Cr∧C2 ‖{S GPs }∪GS Ps ”
w.r.t. P and R(k+1)

P′s
. Since Cr entails Cd, and also since

πV (CPs ) entails πV(C1 ∧Cd ∧C2), πV (CPs ∧Cr) entails
πV (C1 ∧Cr ∧C2). Thus (∗) holds for this new process.

2. Case Cr contradicts Cd. No such suspended process is
created from Ps.

3. Case Cr does not entail Cd nor contradicts Cd. If

CPs ∧ Cr is consistent, a suspended process is created
from Ps, for which we can show (∗) in a similar way to
case 1.

The property (∗) is kept satisfied for the other processes
that are not handled in these cases, since Q@S has not been
used in the reduction of those processes.

Therefore, (∗) holds for any processes after processing
an answer in the fact arrival phase.

Since the property described in this theorem corre-
sponds to the special case of the property (∗), where GS P =

∅, this theorem holds. �
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