Theoretical Properties and Efficient Satisfaction of
Hierarchical Constraint Systems

B JeE il % D BRI MR & %R KR IR

Version 1.0.2

by
Hiroshi Hosobe
AR fdisk

A Dissertation

Submitted to
The Graduate School of
The University of Tokyo
in Partial Fulfillment of the Requirements
for The Degree of Doctor of Science
in Information Science

December 1997

Copyright (©) 1997 Hiroshi Hosobe

© 1997 Hiroshi HOSOBE

Abstract

Constraints are recognized as powerful tools for various problems such as
management of knowledge, logic programming, and construction of graph-
ical user interfaces. Especially, hierarchical constraint systems (HCSs) are
promising since they are effective in modeling over-constrained real-world
problems. However, there are a small number of practical systems and appli-
cations adopting HCSs, because few efficient and reliable constraint solvers
for HCSs are available. A major reason for this situation is that properties
of HCSs useful in designing efficient constraint satisfaction algorithms are
unclear.

The aim of this research is to (1) explore theoretical properties of HCSs
and provide foundations of how to design algorithms for satisfying HCSs.
Furthermore, we (2) prove the viability of our new foundations by actually
developing two constraint solvers for HCSs, mainly targeting construction
of graphical user interfaces.

In this research, we treat two kinds of HCSs. First, we focus on the
theory of constraint hierarchies, which is one of the most popular formu-
lations of HCSs. To begin with, we reformulate the theory with a more
strict definition. Next, we propose generalized local propagation (GLP) as
a framework for studying constraint hierarchies, and show properties useful
for constraint satisfaction. Then, applying the result of GLP, we develop
the DETAIL constraint solver, whose algorithm is the first local propagation
method that solves constraint hierarchies with a global criterion.

As another novel formulation of HCSs, we propose hierarchical linear
systems (HLSs), which can be viewed as specialization of constraint hier-
archies in linear constraints. HLSs provide a basis for designing numerical
constraint satisfaction algorithms that are more reliable than existing lo-
cal propagation algorithms. Finally, using HLSs, we develop the HiRise
constraint solver, integrating the advantages of local propagation with its
numerical algorithm.

© 1997 Hiroshi HOSOBE

L1 [

goobooooboooobobobooobboobbooobooboboboon
bbb ooboobbbbobooooogo
goobobbooooobobobboboooooooobobobbobooooooon
gbboooooboobobooooooooooobbbbooooooooo
oooboobObo0ooooooboobooobboobobobbbobooooon
gobobooooooboobbbobooooooooobobbbooooooooo
obooooooon

00000000 (1)b0o000O0000O000DO0O0ODO0O0DDOODD
0000000000000000000000000 (2)00 GUIODOOO
gOooOdooO0oCcO0Oo0oOoOooOo2000000o0O0oooooooogogo
gbooboobooobobooobogooo
gooO002000000D0000000O00O0OO0O0OCOCOOCOoOoO
00000 100b00b000Db0bO00DbO00oDbDO0O0ODOODODDODOODDOD
gooobobooooobooooooooooobobbbboooooooo
gooobbboooooobbbbbbobooooobobooooooooo
0000000 DETAILOOOO0OO0OO0OO0OO0O0O0OD0DOOOO0OoOoOoOoog
gbooboobooobobooobooobobooboon
oooooboboobobbbbooogoooobobobboboooogooooboooo
gobboooooooobobbbbbobooooooooboooooooo
ooobobbooooooobobobbbobooooooobbbooooooo
0000000000000 0O00000O0D0OO0HIRIseOOOODOOODO
gbooboobooobobooobooboboooboo

ii

© 1997 Hiroshi HOSOBE

Acknowledgment

I wish to express my deep gratitude to my supervisor Prof. Akinori
Yonezawa, who invariably supported and encouraged me during this re-
search. I am greatly indebted to Prof. Satoshi Matsuoka for continuously
guiding and helping me. I am grateful to Mr. Shin Takahashi and Mr. Ken
Miyashita for their collaboration on my early work. Finally, I thank all the
members of TRIP Group (a joint user interface group at the University of
Tokyo and the Tokyo Institute of Technology) for plenty of comments and
suggestions.

iii

© 1997 Hiroshi HOSOBE

Contents

Introduction
1.1 Background o oo
1.1.1 Using Constraints for Construction of Graphical User
Interfaces,
1.1.2 Problems of Under- and Over-Constrained Systems . .
1.1.3 Constraint Hierarchies
1.1.4 Satisfaction of Constraint Hierarchies
1.2 Our Goal, Approach, and Contributions
1.2.1 Our Goal and Approach
1.2.2 Our Contributions
1.3 Overview of the Dissertation

Constraint Hierarchies

2.1 The Original Theory of Constraint Hierarchies
2.1.1 Formulation
2.1.2 Definition of Comparators
2.1.3 Instances of Comparators

2.2 Our Theory of Constraint Hierarchies
2.2.1 Formulation
2.2.2 Global Semi-Monotonicity

2.3 Discussion e e e

Generalized Local Propagation

3.1 Motivation e

3.2 The Theory of Generalized Local Propagation
3.2.1 Formulation Lo
3.2.2 Properties of Global Hierarchy Comparators.
3.2.3 Properties of Local Hierarchy Comparators

3.3 Relationship with the DeltaBlue Algorithm

iv

© 1997 Hiroshi HOSOBE

CONTENTS

4 The DETAIL Constraint Solver

4.1 Overview e e e e e e e e e
4.2 Formulation e
4.3 Algorithm L

4.3.1 The Planning Phase

4.3.2 The Execution Phase
4.4 Implementation,
4.5 Performance Evaluation

Hierarchical Linear Systems
5.1 Motivation o e
5.2 Totally-Ordered Hierarchical Constraint Systems
5.3 The Theory of Hierarchical Linear Systems
5.3.1 Formulation,
5.3.2 Properties of Hierarchical Linear Systems
5.4 Basic Algorithms oo oo oL
5.4.1 Design Strategy
5.4.2 Local Propagation
5.4.3 Elimination 0L
5.4.4 LU Decomposition
5.5 Discussiono Lo
5.5.1 Limitations Owing to Total Ordering of Preferential
Constraints
5.5.2 Hybrid Comparators
55.3 Pivotingo o e

The HiRise Constraint Solver

6.1 Overview i i e e e e

6.2 Algorithm o
6.2.1 Non-Incremental Satisfaction of HLSs
6.2.2 Modifying Triangular Factorizations
6.2.3 Incremental Maintenance of Required Constraints
6.2.4 Incremental Maintenance of Preferential Constraints .

6.3 Implementation L.

6.4 Performance Evaluation
6.4.1 Time Complexity
6.4.2 Experimental Results

6.5 Discussion e
6.5.1 Techniques for Sparse Matrices
6.5.2 Least-Squares Method

© 1997 Hiroshi HOSOBE

34
34
36
42
42
49
49
50

52
52
54
56
56
57
63
63
64
67
68
71

71
71
72

CONTENTS vi

7 Related Work 97
7.1 Research Areas on Constraints 97
7.2 Ordinary Constraint Systems 98
7.3 Least-Squares Problems 99
7.4 Constraint Hierarchies 99

7.4.1 Theories i i i i e e e 99
74.2 Algorithms 99
7.5 Other Over-Constrained Systems 101

8 Conclusion and Future Work 102
8.1 Conclusion e 102
8.2 Future Work 103

8.2.1 Enhancing the GLP Theory 103
8.2.2 More Powerful Constraint Solvers. 103

© 1997 Hiroshi HOSOBE

List of Figures

1.1
1.2
1.3

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2
6.3
6.4
6.5

Layouting four objects in a rectangle.
Dragging an object in a rectangular layout.
Possible layouts resulting from the under-constrained system.

Relationship of nonmonotonic constraint systems.

An ordered partition.o o 0oL Lo
Generalized local propagation.
Walkabout strengths.o 0oL

Constraint cells. Lo L.
A configuration of constraint cells.
A GGB propagation graph.
Adding a constraint. oo
Reversing the dependency between constraint cells.
Adding a constraint to a constraint hierarchy.

A sample GUI application using HiRise.
The application for editing binary trees.
The application for editing general trees.
The application for manipulating Koch’s curve.
Adding details locally to the approximation of Koch’s curve. .

vii

© 1997 Hiroshi HOSOBE

45

87
89

List of Tables

4.1 Times in milliseconds to perform the chain benchmark.. . . .

6.1 Times in milliseconds to edit binary trees defined with re-
quired constraints.o
6.2 Times in milliseconds to edit binary trees defined with re-
quired and preferential constraints.
6.3 Times in milliseconds to edit general trees..
6.4 Times in milliseconds to manipulate Koch’s curve.

viii

© 1997 Hiroshi HOSOBE

Chapter 1

Introduction

Constraints are recognized as powerful tools for various problems such as
management of knowledge, logic programming, and construction of graphical
user interfaces (GUIs). With constraints, programmers and even end users
can solve problems easily since they have only to describe what are problems,
instead of dictating how to solve problems with traditional procedures.

In this dissertation, we discuss constraints from both of the theoreti-
cal and practical viewpoints. In practical discussion, we mainly focus on
construction of GUIs.

1.1 Background

This section presents the background of constraints especially from the view-
point of GUIs.

1.1.1 Using Constraints for Construction of Graphical User
Interfaces

Generally, constraints represent relations among variables that should be
maintained. When declared, a set of constraints works together as a con-
straint system,! and expresses the total relationship among all the variables
that they constrain. To realize this process, software components called
constraint solvers automatically compute solutions of constraint systems by
providing variables in the systems with appropriate values. For an ordinary

! Constraint systems are also known as constraint satisfaction problems and constraint
networks.

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 2

constraint system, each of its solutions is determined so that it satisfies all
the constraints in the system.

In construction of GUIs, programmers employ constraints to represent
relations among internal data, connections between internal data and graph-
ical objects, and layouts of graphical objects. Consider, for example, that
a programmer tries to layout four objects a, b, ¢, and d by specifying the
following constraint system:

ay=b.y
cy=dy
(1.1) a.x = C.x
b.x = d.x.

Then, satisfying the constraints, the constraint solver may obtain a solution
indicating the rectangular structure of the objects, for example, as illustrated
in Figure 1.1.

Figure 1.1: Layouting four objects in a rectangle.

For GUlIs, constraints are useful for specifying dynamic behavior as well
as static structure such as the rectangular layout of the objects. For in-
stance, suppose that the programmer wants to move the overall rectangle
in the previous example by dragging the object d with a mouse. With con-
straints, the programmer can accomplish this task by adding the following
new constraints, which bind the mouse cursor with d:

d.x = mouse.x

(1.2) d.y = mouse.y.

While d is being dragged, the automatic nature of the constraint solver will
maintain the constraint system, which may result in the motion of the overall
rectangular structure as shown in Figure 1.2 (where the gray image indicates
the layout before the drag). To release d, the programmer only needs to
remove the mouse binding constraint from the system. A point is that the

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 3

programmer did not have to consider which objects to move later when he
or she specified the constraint system (1.1) for the layout. Whichever object
the programmer binds the mouse cursor with, the constraint solver will
maintain the resulting constraint system to obtain an appropriate behavior.

Figure 1.2: Dragging an object in a rectangular layout.

1.1.2 Problems of Under- and Over-Constrained Systems

Constraint systems may have multiple solutions, and such systems are said
to be under-constrained. Programmers often suffer from under-constrained
systems because some of their solutions do not satisfy their intention. As
an example, consider again the previous example of layouting objects in a
rectangle. For the constraint system (1.1) with (1.2), the constraint solver
may obtain other layouts as given in Figures 1.3 (a) and 1.3 (b). In Figure 1.3
(a), the object a stays where it was, and thus the rectangle is resized as d
is moved. By contrast, in Figure 1.3 (b), although neither of the size of
the rectangle and the positions of the objects are preserved, the behavior is
correct as a solution of the constraint system (but is almost unlikely to be
acceptable to the programmer).

To avoid undesirable solutions due to under-constrained situations, pro-
grammers must present sufficient sets of constraints to systems. In the
layout example, to move the overall rectangle without changing its size, the
programmer should have provided in advance constraints fixing the size, e.g.

stay (width)

(1.3) stay(height)

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 4

(aD b

Figure 1.3: Possible layouts resulting from the under-constrained system.

where we assume that the following constraints are also specified:

a.x + width = b.x

(1.4) a.y + height = c.y.

Ordinary constraint systems sometimes have no solutions because they
have too many constraints, and are said to be over-constrained. Again in
the layout example, consider that the programmer changes his or her plan to
resizing the rectangle although he or she previously supplied the constraints
(1.3) for moving the overall layout. Then the programmer may declare
constraints that stay the object a as follows:

stay(a.x)

(1.5) stay(a.y).

However, when the object d is dragged with (1.2), the constraint solver will
fail because of the conflict of (1.5) with the previous constraints (1.3) for
fixing the size.

1.1.3 Constraint Hierarchies

To prevent constraint systems from getting under-constrained or over-
constrained, it is required for programmers to maintain necessary and suf-
ficient sets of constraints. However, it is difficult to always guarantee this
requirement. Therefore, we need some mechanism for appropriately treating
over-constrained situations.

For this purpose, various approaches are proposed. In particular, ‘con-
straint hierarchy,” which is a class of hierarchical constraint systems (HCSs),
is promising for GUIs. By definition, a constraint hierarchy consists of con-
straints with hierarchical strengths such as required, strong, medium, and

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 5

weak, which can be regarded as the preferences or priorities of the con-
straints. Intuitively, solutions of constraint hierarchies are determined so
that they will satisfy as many strong constraints as possible, leaving weaker
inconsistent ones unsatisfied. In other words, weak constraints work by
default when stronger conflicting ones do not exist.

In constructing GUIs with constraint hierarchies, programmers use
weaker constraints for specifying relations that they may revoke. For in-
stance, in the running layout example, the programmer initially gives (1.1)
(for the rectangular structure) and (1.4) (for the size) as required constraints
and (1.3) (for fixing the size) as weak. Then, when he or she supplies (1.2)
(for dragging d) as medium, the rectangle will be moved as is with an ordi-
nary constraint system. By contrast, if the programmer provides (1.5) (for
staying a) as strong in addition to (1.2) as medium, the rectangle will be
resized, revoking the weak constraints (1.3), as opposed to the case with an
ordinary system that resulted in a failure.

1.1.4 Satisfaction of Constraint Hierarchies

To realize interactive GUIs using constraint hierarchies, we need efficient
constraint satisfaction algorithms that handle constraints expressive enough
to construct GUIs. Constraint hierarchies are unique among approaches to
over-constrained systems in that they have efficient constraint satisfaction
algorithms proposed. We can categorize the algorithms into the following
three approaches:

The refining method first satisfies the strongest level, and then, weaker
levels successively. It is mainly employed in constraint logic program-
ming languages such as HLCP(R, x) with the DeltaStar constraint
solver [90] and CHAL [77].

The optimization approach transforms constraint hierarchies into opti-
mization problems by assigning appropriate weights to strengths. It is
adopted in recent constraint solvers for GUIs such as Cassowary and

QOCA [12].

Local propagation gradually solves hierarchies by repeatedly selecting
uniquely satisfiable constraints. It is used in various constraint solvers
for GUISs including DeltaBlue [22] and SkyBlue [73].

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 6

First, to see the refining method, suppose we have the following con-
straint hierarchy:

required =z =y
strong y=2z+1
medium z =0
weak z=1.

This is solved as follows: First, by satisfying the strongest constraint required
z =y, the method reduces the set @ of all variable assignments (mappings
from variables to their values) to

{0co|6(x)=0(y)}
Second, by fulfilling the next strongest one strong y = z + 1, it obtains
{6 € | 6(x) = 0(y) A O(y) = (=) +1}.
Third, evaluating medium z = 0 yields
{00 |6(z)=1N0(y) =11N6(z) =0}.

Now, the weakest constraint weak z = 1 conflicts with the assignments that
have been generated from the stronger constraints, and therefore, remains
unsatisfied. As shown in this example, the refining method is a ‘straightfor-
ward’ algorithm for solving constraint hierarchies.

Next, to make out the optimization approach, reconsider the hierarchy in
the last example. It transforms the hierarchy into the following optimization
problem:

minimize wstronge(gl) + wmediume(52) + wweake(ES)
subject to x =1y

y=z+1+¢;
z2=0+4¢e9
z=1+4¢3

where Wstrong, Wmedium, and wyeak indicate weights associated with the
strengths strong, medium, and weak respectively. Weights are determined
so that one for a strength is heavier than ones for weaker strengths. Also,
the function e is usually defined as e(¢) = |¢| or e(¢) = £2. Intuitively, e(e1),
e(e2), and e(e3) represent errors of y = z+ 1, z = 0, and z = 1 respec-
tively. Algorithms adopting this approach solve such optimization problems

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 7

using some known optimization techniques. It depends on actual algorithms
whether they can solve constraint hierarchies exactly. In other words, some
algorithms obtain approximate solutions.

Finally, to comprehend local propagation, consider the last constraint
hierarchy again. Local propagation handles it as follows: First, since medium
z = 0 can be uniquely solved, it acquires the set of variable assignments

(66 |6(z) =0}.

Next, since the instantiation of z makes strong y = z+ 1 uniquely satisfiable,
it produces

{00 |6(y) =1AN60(z) =0}.
Finally, computing required z = y, it outputs
{00 |6(z)=1N0(y) =11N6(z) =0}.

Note it must reject the weakest constraint weak z = 1 at the beginning;
otherwise, it would yield an incorrect or empty solution. As suggested with
this example, local propagation algorithms must schedule constraints, or
plan in what order they will choose and solve constraints, discarding the
ones that lead to incorrect solutions.

1.2 Our Goal, Approach, and Contributions

This section describes our approach to the goal of this research, and our
contributions to the research area.

1.2.1 Owur Goal and Approach

The goal of this research is to reveal theoretical properties of HCSs and pro-
vide foundations of how to design algorithms for satisfying HCSs. Further-
more, we prove the viability of our new foundations by actually developing
two constraint solvers for HCSs, mainly targeting construction of GUISs.

In investigating properties of HCSs, we direct our attention to local
propagation, which is largely different from the other approaches. While it
is rather easy to intuitively understand how the refining method and the
optimization approach work correctly, it is difficult to understand how local
propagation guarantees that it obtains correct solutions of HCSs.

As a first step, we focus on the theory of constraint hierarchies, which is,
as noted, one of the most popular formulations of HCSs. To begin with, we

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 8

reformulate the theory with a more strict definition [38]. Next, we propose
generalized local propagation (GLP) as a framework for studying constraint
hierarchies, and show properties useful for constraint satisfaction [36, 38].
Then applying the result of GLP, we develop the DETAIL constraint solver,
whose algorithm is the first local propagation method that solves constraint
hierarchies with a global criterion [39, 40].

Past local propagation algorithms treat dataflow constraints, although
most practical applications demand algebraic constraints. For ordinary
(i.e. non-hierarchical) constraint systems, algebraic constraints are usually
solved with numerical algorithms. Also, some HCSs can be addressed with
the refining method or the optimization approach.

In the second stage of this research, we discuss how to solve HCSs with
algebraic constraints by introducing the essential idea of local propagation
into numerical algorithms. This does not only expand the range of types
of constraints that can be handled with local propagation, but also allows
us to adopt various useful techniques developed in the field of numerical
computation to solve HCSs.

Specifically, we propose a novel formulation of HCSs that we call hier-
archical linear systems (HLSs), which can be viewed as a specialization of
constraint hierarchies in linear constraints [37]. HLSs provide a basis for de-
signing numerical constraint satisfaction algorithms that are more reliable
than existing local propagation algorithms. Finally, using HLSs, we develop
the HiRise constraint solver, integrating the advantage of local propagation
with its numerical algorithm.

1.2.2 Owur Contributions

Contributions of this research can be summarized as follows:

e We present an alternative formulation of constraint hierarchies that is
more strict and abstract than previous operational ones. With this for-
mulation, we can discuss properties of criteria for satisfying constraint
hierarchies from a more general viewpoint. In fact, we construct an
important class that contains most of known useful criteria.

e We provide GLP as a theoretical framework for investigating satis-
faction of constraint hierarchies. It covers approaches that solve con-
straint hierarchies by dividing them. For example, it can explain both
the refining method and local propagation.

e We develop the DETAIL constraint solver based on GLP. It is the first

© 1997 Hiroshi HOSOBE

CHAPTER 1. INTRODUCTION 9

1.3

This

local propagation solver that maintains constraint hierarchies with a
global criterion.

We propose HLSs as a simple but useful class of HCSs. With this, we
show that HCSs are not special but natural concepts that are easy to
understand. We also suggest that various existing methods for linear
computation will be easily applicable to satisfaction of HLSs.

We develop the HiRise constraint solver by adopting HLSs. It realizes
incremental constraint satisfaction by incorporating local propagation
technology into a numerical algorithm. It is a significant contribu-
tion since it proves that local propagation is useful even for numerical
algorithms.

Overview of the Dissertation

dissertation is composed as follows:

Chapter 2 formalizes constraint hierarchies. First, it introduces the
original theory of constraint hierarchies. Next, it proposes our mod-
ified theory, and finally discusses the difference between the original
and ours.

Chapter 3 proposes generalized local propagation (GLP) as a theoret-
ical framework for scheduling constraints in constraint hierarchies.

Chapter 4 presents a constraint solver called DETAIL, which is the
first local propagation algorithm adopting a global criterion.

Chapter 5 formalizes hierarchical linear systems (HLSs) as a specializa-
tion of constraint hierarchies in linear constraints, and provides several
basic algorithms for solving HLSs.

Chapter 6 describes the HiRise constraint solver, which provides in-
cremental planning and real-time execution for satisfying HLSs.

Chapter 7 describes previous researches on constraints, especially from
the viewpoints of treatment and satisfaction of over-constrained sys-
tems.

Chapter 8 concludes the dissertation.

© 1997 Hiroshi HOSOBE

Chapter 2

Constraint Hierarchies

This chapter formalizes constraint hierarchies. First, it introduces the orig-
inal theory of constraint hierarchies. Next, it proposes our modified theory,
and finally discusses the difference between the original and ours.

2.1 The Original Theory of Constraint Hierarchies

This section gives the original theory of constraint hierarchies proposed by
Borning et al. They first presented a formulation of constraint hierarchies
in [7], and later provided revised formulations [9, 11, 90, 91, 92, 93]. This
section introduces their formulation based on [90].!

2.1.1 Formulation

Let X be the set of variables, D the domain of the variables, and C the
set of constraints. A strength is an integer between 0 and [y, where [, is
some positive integer. Intuitively, strength 0 indicates the required strength,
strengths larger than 0 represent preferential strengths, and the larger the
number of a strength, the weaker it is. A labeled constraint is a constraint
associated with a strength.

A constraint hierarchy is a finite multi-set of labeled constraints. Given
a constraint hierarchy H, H is divided into levels Hy, Hy,... ,H;, , where
H; is a sequence of constraints with strength [in some arbitrary order, e.g.

Hl = [617027"' ,Ck]

!Some technical terms and mathematical symbols are modified for consistency with
our theory in the next section.

10

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 11

where each ¢; is a constraint in level [of H.

Solutions of a constraint hierarchy are expressed as wariable assign-
ments.?2 A variable assignment @ is a mapping from X to D, and @ indicates
the set of all variable assignments.

To define solutions, the original formulation uses a comparator denoted
as better. Intuitively, better(6,60', H) means that 6 is better than 6’ accord-
ing to H.

Now, the solution set S of a constraint hierarchy H is defined as follows:

S={0e Sy |30 €Sy.better(¢',0,H)}
where
So ={0 € ® | Vc € Hy. holds(c,0)}

in which holds(c,#) means that c is exactly satisfied for 6. Intuitively, Sy is
the set of all variable assignments satisfying the required constraints in H,
and a solution of H is an assignment in So that has no better assignments
in S().

The original formulation insists that all better comparators are irreflex-
ive:

VH.V6. - better(6,6,H).
Also, it assumes that most (not all) better comparators are transitive:
VH.VO.V0'. V0" . better(0,0', H) A better(¢',0", H) = better(6,0", H).

It insists another property “better respects the hierarchy,” that is, if
there is a variable assignment in Sy that completely satisfies all the con-
straints through level I, then all variable assignments in S must satisfy all
the constraints through level I:

(30 € Sp.30 > 0.VI' € {1,... ,1}.Ye € Hy. holds(c, 0))
= V0 e S.Vie{l,...,l}.Vc € H;. holds(c,8').

2The original theory employs the term ‘valuation’ instead of ‘variable assignment.’
However, in this dissertation, we use ‘variable assignment’ since it seems to be more
familiar.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 12

2.1.2 Definition of Comparators

This subsection defines better comparators, and presents a brief example of
satisfaction of a constraint hierarchy.

Given a constraint ¢ and a variable assignment 6, an error function e(c, 6)
returns a non-negative real number by evaluating the error of ¢ for 6. The
condition e(c,0) = 0 indicates that c is exactly satisfied for §. The original
formulation provides two kinds of error functions: predicate and metric. The
predicate error function is defined as follows:

0 if c is exactly satisfied for 6
1 otherwise.

e(c,) :{

By contrast, the metric error function is calculated using some distance. For
example, the error of a constraint z = y is defined as

e(‘z =y’ 0) = [0(z) — O(y)|-

Given a level H; and a variable assignment 6, the function E returns the
sequence containing errors of constraints in H; for 6:

E(Hlae) = [6(0179)’6(0279)," . ae(ckae)]'

A combining error function g joins errors E(Hj,0) into a combined error.
Two combined errors are compared by a reflexive and symmetric relation
<>4 and an irreflexive, antisymmetric, and transitive relation <,4. Intu-
itively, g(E(H;,0)) <>4 g(E(H;,0")) means that the combined error of H;
for 6 is similar to the one for ¢, and g(E(H;,0)) <, g(E(H;,#')) indicates
that the combined error for 6 is smaller than the one for §’. The original
formulation proposes several comparators by presenting instances of <>,
and <4, which will be described in the next subsection.

A combined error sequence of H is a sequence with combined errors of
all preferential levels, i.e.

[9(E(Hy,0)),9(E(H,0)),. .. ,9(E(H,,0))].

Two combined error sequences [ui,us,...,u;,] and [v1,v2,...,v;,] are
compared by a lexicographic order <¢ as follows:

[wy,ug,...,u] <g [v1,v2,...,01,]
= dledl,... ,lw}.(Vll e{l,...,l—1}.up <>4 vy) Ay <g vy

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 13

Now, better is defined as follows:

better(0,6', H)
= [9(E(Hy,9)),... ,9(E(H,,,0))] <g [g(E(Hy,)),... ,9(E(H,,,0))]

Since the comparator is defined as lexicographic ordering with combined
errors of levels as its components, the result of a level has absolute priority
over those of weaker ones.

To see how the formulation works, consider the following simple example
of a constraint hierarchy quoted from [90]:

required = >0
strong z <10
weak r=4

where the domain is assumed to be real. First, the set Sy is determined as
the set of all variable assignments satisfying the required constraint = > 0,
i.e.

So=1{0€O|6(z)> 0}

Then the solution set S is made as the set of all assignments in Sy that
have no better assignments in Sy. Since better is lexicographic ordering, it
respects the strong constraint < 10 more than the weak constraint z = 4.
Therefore, Sy can be narrowed into

{6€O|6(z)>0A0(x) < 10}

which consists of assignments in Sy that satisfy x < 10. Finally, using the
weak constraint x = 4, S is obtained as follows:

S = {0c@|0(z)>0A0(x) <10 Ab(z) = 4}
= [0cO |0 =4

2.1.3 Instances of Comparators

Most constraint hierarchies have multiple constraints at each levels. It fol-
lows that constraints may conflict with each other inside a single level. To
treat conflicts inside levels, constraint hierarchies use various comparators
defined with <>, and <,.

The original formulation classifies comparators into three categories:
globally-better, locally-better, and regionally-better. Let u = [uy,us,... ,ug)

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 14

and v = [v1,v2,...,vx] be sequences of errors of constraints. For globally-
better, <>, and <4 are defined with the following forms:

(v)
(v)
where the combining error function g returns a non-negative real number,
and = and < are the ones for real numbers. Several instances of globally-
better are proposed, and major ones are weighted-sum-better, least-squares-
better, and worst-case-better:

u<>,v = g(u)=gyg
u<sv = glu)<g

e For weighted-sum-better, the combining function is
g(v) = Z w;v;
i

where w; indicates the weight associated with the ¢-th constraint.

e For least-squares-better, the combining function is
_ 2
g(v) = Z w;vy .
i

e For worst-case-better, the combining function is

g(v) = m.z_ax{wivi}.

For each comparator, error functions may be either predicate or metric.
For example, weighted-sum-predicate-better is defined as weighted-sum-bet-
ter using the predicate error function, and weighted-sum-metric-better is
defined as weighted-sum-better with the metric one. Also, as a special case
of weighted-sum-predicate-better, unsatisfied-count-better is defined using
weight 1 for each constraint; intuitively, unsatisfied-count-better compares
assignments using the number of unsatisfied constraints.
For locally-better, <>, and <, are defined as follows:

(2.1) uUu<>4v = Vi, = v;
u<gv = Vi <v; A uy <o

Locally-better using the predicate error function is called locally-predicate-
better, and the one with the metric function is called locally-metric-better.

3Locally-metric-better is also known as locally-error-better [5].

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 15

Locally-better considers each constraint individually. It is often unable to
compare variable assignments because of the situation that one assignment
produces an error smaller than the other for some constraint but larger for
another constraint.

For regionally-better, <, and <>, are defined as follows:

u<gv = Vi, < v A uy < vy
u<>,v = ~(u<gvVo < u).

Regionally-better has the same <4 as locally-better, but it is always able to
compare variable assignments because of the different definition of <>,4. As
a result, regionally-better tends to yield solution sets smaller than locally-
better. Also, it should be noted that regionally-better is not transitive while
globally-better and locally-better are transitive.

To make out how comparators work differently, consider the following
constraint hierarchy:

required = >0
strong =2

strong x =4

where both of the strong constraints have weight 1 if needed. Then, with
weighted-sum-metric-better, the solution set is

{00 |2<6(zx)<4}.
With least-squares-better and worst-case-better, the solution set is
{0 €6 |6(z)=3}.

With weighted-sum-predicate-better, locally-better, and regionally-better,
the solution set is

(00 |6(z)=2V0z) =4}

To further learn the difference among comparators, see [9] and [90].

2.2 Owur Theory of Constraint Hierarchies

This section provides our theory of constraint hierarchies.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 16

2.2.1 Formulation

First, we modify the original formulation of constraint hierarchies so that it
will allow us to better investigate properties of constraint hierarchies. In-
tuitively, the main changes are to explicitly parameterize target hierarchies,
and to replace concrete embedded functions/relations with abstract ones
satisfying reasonable conditions.

To begin with, we define basic terms and symbols. Let X be the set
of variables, D the domain of the variables, and C the set of constraints.
Given a constraint ¢, X (¢) denotes the set of all the variables constrained
by ¢, and given a set C of constraints, we define

XC)={ze X |JceC.zec X(c)}

which consists of all the variables constrained by some constraints in C. A
strength is an integer between 0 and Iy, where [y, is some positive integer.
Intuitively, the larger the integer is, the weaker the strength is. Let L
be the set of all the strengths. A labeled constraint ¢/l is a constraint c
associated with a strength /. A constraint hierarchy is a finite multi-set H
of labeled constraints*, and H expresses the set of all constraint hierarchies.
For convenience, we define H/I as follows:®

H/l={ceC |c/l e H}.

Shortly, H/l represents the set of all constraints in level [of H. Note that
the strength [is detached from the labeled constraints.

To represent solutions of constraint hierarchies, we also use variable as-
signments. A variable assignment, denoted as 6, is a mapping from X to
D, and © indicates the set of all variable assignments. Given a set X of
variables, we define (X) = 6'(X) as follows:

8(X) =0/ (X) =Vz € X.0(z) = 0 (x).

That is, with 6 and €', all variables in X have equal values.
To assign semantics to constraints, we first introduce error functions in
the same way as the original formulation:

4Since constraint hierarchies are multi-sets, they can contain multiple copies of a la-
beled constraint. In the following discussion, we assume that set operations for constraint
hierarchies are the ones for multi-sets. For example, merging two constraint hierarchies H
and H', both of which contain one copy of a labeled constraint ¢/I, the resulting hierarchy
H U H' has two copies of ¢/I.

®We assume that when H has multiple copies of ¢/I, H/I also contains the same number
of copies of c.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 17

Definition 2.1 (error function). An error function for level [is a map-
ping ¢; : C x ® — {0} U R" such that for any constraint ¢ and variable
assignments 6 and €',

(X (c)) = 0'(X(c)) = ec,0) = ei(c,).

Intuitively, e;(c,) indicates the error of a labeled constraint ¢/l for 6, which
is zero if ¢/l is exactly satisfied, and positive otherwise. The condition
requires that errors of a constraint for two variable assignments are equal if
the assignments have equal values for each constrained variable.

Next, we introduce level comparators:

Definition 2.2 (level comparator). A level comparator for level [is a
Jl

ternary relation <: H x @ x @ such that for any constraint hierarchies H

and H' and variable assignments 6, ¢, and 6",

HJl H' /1
(2.3) H/l=H']l = 6 <60<60 <0
HJl H/l
(2.4) Ve e H/l.ej(c,0) = ec,0") = (0 S 0 <0" <0
H/l HJl
(2.5) Ve e H/l.e(c,0') = e(c,0") = (0 < 6 <6 6"
H/I
(2.6) Vee H/l.e(c,0) < ec,8') = 6 <6
HJl H/l H/l
(2.7) 8<oN <O = 656"
H/l H /1 (HUH")/l
(2.8) 6 <on S0 =0 < ¢
(2.9) (Ve € H/l.€e(c,0) =0)
H/l HJl
A(3ce H/l.ec,0')>0) = 6 S 0 nr-6 < 6.
H/l

Intuitively, § < 6 means “# is better than or similar to ' according to [
of H” Conditions (2.3)-(2.5) say that the scope of a level comparator is
restricted to be inside a designated level. Condition (2.6) indicates that if
errors of all constraints at a level for an assignment are smaller than or equal
to those for another assignment, then the former assignment is better than or
similar to the latter according to the level. Condition (2.7) is ‘transitivity’

SThis property is quite natural as a requirement. However, the original theory does not
dictate the property although it may assume it implicitly; it does not need the property as
far as it discusses. By contrast, we require it to further investigate constraint hierarchies.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 18

of a level comparator. Condition (2.8) means that if, in two hierarchies,
an assignment is better than or similar to another according to the level,
then the relation holds in the combination of the hierarchies. Condition
(2.9) corresponds to ‘respecting every hierarchies,” which is presented in [94]
as a convincing sufficient condition for the property ‘better respects the

hierarchy.’
/1 :

For convenience, we define > (worse than or similar to), L (similar to),
1 1 -/l
é (better than), é (worse than), and ¢ (incomparable with) as follows:
H/l H/l
6 >0 < 0 <6
H/l H/l
0y o 6<0n0 >0
H/l HJl
0y o 6 < o0y
H/l H/l
0y o 0> en-0e
H/l H/l H/l
6 £0 & -0 6A-0206.

Level comparators correspond to <4 and <>, in the original formulation.
The differences are briefly summarized as follows: the original formulation

Jl

separates < into <4 and <>,4, and defines them constructively; it includes
(2.3)-(2.5) operationally; it seems to implicitly assume (2.6); it does not

require the transitivity of £ unlike (2.7) (in spite of assuming it for most
instances); it presents no condition like (2.8).

We can define level comparators in the same way as the original theory.
For example, the least-squares level comparator is defined as follows:”
H/l
rg 0 < Z 61(079)2 < Z el(ca 9,)2'

c/leH c/leH

0

Here, two variable assignments are compared by summing squares of errors
of constraints at the level. It is easy to prove that the definition fulfills the
conditions for level comparators. Used in satisfaction of constraint hierar-
chies, it works as the least-squares method within level [.

"While the original theory provides the explicit use of weights of constraints in least-
squares-better, we omit them for simplicity. However, even if we incorporate weights, we
can obtain the similar results presented in this research.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 19

Next, we define hierarchy comparators that totally consider constraint
hierarchies by combining level comparators:

Definition 2.3 (hierarchy comparator). A hierarchy comparator is a
ternary relation < : H x @ x @ such that for any constraint hierarchy H
and variable assignments 6 and 6’,

H 4 H/l
020 cacrwernr<i=o™ oyne Ly

Intuitively, 0 g 0’ means “f is better than 6’ according to H.” It is defined
as lexicographic ordering with level comparators as its components. Conse-
quently, the result of a level comparator has absolute priority over those of
weaker ones.

For convenience, we define > (worse than), ~ (similar to), < (better than

or similar to), 2 (worse than or similar to), and ¢ (incomparable with) as
follows:

H H

6>0 < 6<60

09 o vier.o™y
H

<6 o 626vele
H

>0 o 626vele

H H H
040 o -0<0AN-0>0.

The following definition describes satisfaction of constraint hierarchies
using a hierarchy comparator:

Definition 2.4 (constraint hierarchy satisfier). A constraint hierar-
chy satisfier is a mapping S:2 x H — 2 defined as

SO,H) ={0cO|-30co.0 o).

As a shorthand, we write S(H) instead of S(@, H). Intuitively, S(©, H) is
the set of assignments obtained by satisfying H using assignments in ©. By
definition, an assignment in S(©, H) is an element in © such that there is
no better assignment in © when compared according to H.

Finally, we define solutions of constraint hierarchies:

Definition 2.5 (solution). A solution to H is a variable assignment in
S(H).

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 20

In other words, a solution of H is an assignment found by satisfying H in
the set of all assignments.
Hierarchy comparators are simply called ‘comparator’ in the original

formulation, that is, < corresponds to <g. One difference is that the original
formulation restricts a single kind of level comparators in defining a hierarchy
comparator. By contrast, our formalization allows us to combine multiple
kinds of level comparators in a hierarchy comparator; such combination is
sometimes useful for practical purposes.

Another difference is that the original formulation restricts top-level con-
straints to be required, whereas ours allows conflicting constraints at the top
level. This is because our definition of hierarchy satisfiers excludes the spe-
cial treatment of the top level. However, the resulting solutions are the
same so far as the top level is not over-constrained. Also, even if we add
the condition for the top level to be required, we can accommodate it in our
following proofs (but they should be rather complicated).

2.2.2 Global Semi-Monotonicity

We define a useful property called global semi-monotonicity (GSM) in sat-
isfying constraint hierarchies as follows:

Definition 2.6 (global semi-monotonicity). S is globally semi-monotonic
iff for any H and H',

S(H)NS(H') C S(H U HY).

GSM requires that any common solution of two constraint hierarchies is
also a solution of their combination. It is not only natural but also weak (or
general) in a sense that the condition is true for any two hierarchies sharing
no solutions.

GSM, by definition, is not limited to constraint hierarchies. In a similar
style, we can express basic properties of various constraint systems. For
example, we can represent ordinary monotonicity as

S(H)NS(H')=S(HUH')
where the difference from GSM is that it has
S(H)NS(H') > S(HU H').
Thus we can see that GSM lacks the familiar style of the monotonic property,

S(H) D S(HUH')

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 21

which means that adding constraints to a constraint system either preserves
or reduces their solutions.’

We present a useful class of GSM constraint hierarchy satisfiers called
global constraint hierarchy satisfiers, using global level comparators and
global hierarchy comparators:

./l
Definition 2.7 (global level comparator). A level comparator < is

global iff for any constraint hierarchies H and H’ and variable assignments
and 0',

H/l U HUH'")/1
(2.10) 0Ly g™y o gy
H/l 1
(2.11) 046 = -gHE)Ny
HJ/l H'/l HUH'")/1
(2.12) ﬁ9</9'/\ﬂ9 </ 6 = ﬂa(<)/ !

Definition 2.8 (global hierarchy comparator). A hierarchy compara-
tor is global iff each of its level comparators is global.

Definition 2.9 (global constraint hierarchy satisfier). A constraint hi-
erarchy satisfier is global iff its hierarchy comparator is global.

An example of global level comparators is the least-squares level comparator.
Most level comparators presented in the original formulation are also global,
which we will discuss later.

The following theorem proves that global constraint hierarchy satisfiers
are GSM:

Theorem 2.10. Let S be an arbitrary global constraint hierarchy satisfier.
Then S is GSM.

Proof. By contradiction: Assume that S is global, and that for some con-
straint hierarchies H and H',

S(H)N S(H') C S(H UH)

does not hold, that is, there exists a variable assignment 6 that is in S(H)
HUH'
and S(H'), but not in S(H U H'). Then, for some assignment ', ¢’ < g

holds, that is, for some level [,

(HUH') /I (HUH")/l

WM'eLl<l=¥¢ NG <7 6.

8We believe that such a universal style of formal properties is helpful in comparing
different nonmonotonic systems.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 22

By (2.10) and (2.11), & " g implies
H/U H' /U / nu H/U H' /U
@ L one ™S oy ™ aone ™ oyvie L one "L g

HUH")/1
and by (2.12), ¢’ (<)/ 6 implies

H/l H' [l
o' </ ove </ 0.

Hence, at least one of the following two cases must hold:

1. Case

, H'/l” H/l’
0 ~

WLl <IANM"eLI"<I'=6"L ga OAE < 6.

H
Then ¢’ < 6 holds, which is a contradiction to § € S(H).

2. Case

" 10 H'/l
WeLl <inW'eDl" <l =0 gne " oyne "L o,

HI
Then 6’ < 0 holds, which is a contradiction to 8 € S(H').

Both of the two cases resulted in contradiction. Thus, for any constraint
hierarchies H and H’,

S(HYNS(H') C S(HUH')
holds. Therefore, S is GSM. a

The converse, that GSM satisfiers are global, is not true; in fact, we have
not found weaker conditions for level comparators that yield a set equivalent
to GSM. However, we believe that most useful GSM satisfiers are global.?

9Actually, we could make the converse true if we strengthened the formulation of
constraint hierarchies by allowing only ‘modular’ hierarchy comparators as follows: let
level comparators be in a certain set including the least-squares level comparator, and
also let hierarchy comparators need to be arbitrarily composed of level comparators in the
set. For modular hierarchy comparators, the truth of the converse is easily provable since
we can create a non-GSM satisfier by combining any non-global and the least-squares level
comparators. Another set of level comparators without the least-squares level comparator
may exist, but is unlikely to be more useful.

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 23

Global hierarchy comparators might seem strongly related to globally-
better comparators in the original formulation, but in fact, they are dif-
ferent. One instance of globally-better, least-squares-better, is composed
of the least-squares level comparators, and therefore, is global. However,
worst-case-better is not global because (2.10) does not hold. Generally, for
level comparators for globally-better, (2.11) is true since they compare real

H/l
numbers, i.e. =6 7({ ¢'. However, it depends on actual instances of level
comparators whether both (2.10) and (2.12) hold.

It should also be noted that even locally-better comparators are global.
Before showing it, we define local level comparators, local hierarchy compara-
tors, and local constraint hierarchy satisfiers:

./l
Definition 2.11 (local level comparator). A level comparator < is lo-
cal iff for any constraint hierarchy H and variable assignments 6 and ¢’,

H/l
(2.13) 0 < 0 =Vee H/l.e(c,0) < efc,8).

Definition 2.12 (local hierarchy comparator). A hierarchy compara-
tor is local iff each of its level comparators is local.

Definition 2.13 (local constraint hierarchy satisfier). A constraint hi-
erarchy satisfier is local iff its hierarchy comparator is local.

By (2.6) and (2.13), a local level comparator results in
H/l
6 < 0 o Vee H/l.efc,0) < eflc,d').

/1 /t
Because of the definitions of L and <, we can obtain the following relations:

6™ o Vee H/lef(e,d) = elc,6)

H/l
0 </ 0 < (Vee H/l.elc,0) <elc,b)) A

(3 € H/l.¢i(c,0) < e(c,8"))
which are equivalent to (2.1) and (2.2) for defining locally-better compara-

tors in the original formalization.
Now, we can prove the following proposition:

Proposition 2.14. Any local level comparator is global.
Proof. Straightforward by Definitions 2.7. a

© 1997 Hiroshi HOSOBE

CHAPTER 2. CONSTRAINT HIERARCHIES 24

nonmonotonic
...

globally semi-monotonic

4 partial constraint saliisfac[ion N GS: global satisfier

T LS: local satisfier

GB: globally-better

our constraint hierarchies LB: locally-better

H RB: regionally-better

LSB: least-squares-better
WSB: weighted-sum-better
WCB: worst-case-better

M: monotonic

original constraint hierarchies

Figure 2.1: Relationship of nonmonotonic constraint systems.

Clearly, it follows that local hierarchy comparators and local constraint hi-
erarchy satisfiers are also global.

The proposition provides a critical difference between global hierarchy
and globally-better comparators: although original formulation presented
locally-better and globally-better as separate concepts, we successfully in-
tegrated locally-better and an important class of globally-better into global
hierarchy comparators via GSM.

2.3 Discussion

In this section, we review the relationship between the original and our
theories of constraint hierarchies, which is roughly illustrated in Figure 2.1.

Our reformulation of constraint hierarchies has become narrower than

. . . -/l o,
the original one,'? because we necessitated L to be transitive by (2.7). For

example, we exclude regionally-better in [90] since for its A is not transi-
tive. However, excluding such level comparators contributed to theoretical
cleanness.

Except regionally-better and worst-case-better, all the hierarchy com-
parators presented in the original formulation are global by our formulation.
We believe that this fact supports the expressiveness of our global compara-
tors with respect to constraint hierarchies. Furthermore, in Chapter 3, we
show that global comparators are useful in designing efficient constraint
satisfaction algorithms.

10Strictly speaking, as noted earlier, our theory allows conflicting constraints at the top
level, while the original theory restricts top-level constraints to be required.

© 1997 Hiroshi HOSOBE

Chapter 3

Generalized Local
Propagation

This chapter proposes generalized local propagation (GLP) as a theoretical
framework for scheduling constraints in constraint hierarchies.

3.1 Motivation

Local propagation takes advantage of the potential locality of typical (possi-
bly, non-hierarchical) constraint systems in graphical user interfaces. Basi-
cally, it is efficient because it uniquely solves a single constraint in each step.
In addition, when a variable value is repeatedly updated by an operation
such as dragging in interactive interfaces, it can easily re-evaluate only the
necessary constraints using the same schedule or plan. Furthermore, most
local propagation algorithms improve their efficiency by incrementally up-
dating plans for solving constraint systems when constraints are added or
removed.

However, local propagation has been restricted to locally-better com-
parators (i.e. local hierarchy comparators) and multi-way constraints, which
can be uniquely solved for each variable, e.g. linear equations over real num-
bers.! Also, it cannot find multiple solutions for a given constraint hierarchy
due to the uniqueness.

Naturally, a question arises whether we can ‘generalize’ local propagation
to solve hierarchies of more powerful constraints without losing its efficiency.

!Multi-way constraints are similar to functional constraints, which were introduced
in the AC-5 arc-consistency algorithm [32]. However, their contexts are quite different,
because arc consistency targets binary constraint satisfaction problems over finite domains.

25

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 26

In this chapter, we propose generalized local propagation, a theoretical frame-
work for investigating local propagation on constraint hierarchies, and show
that global semi-monotonicity presented in Chapter 2 exhibits a practically
useful property in generalized local propagation.

3.2 The Theory of Generalized Local Propagation

This section provides the theory of generalized local propagation.

3.2.1 Formulation

Classical local propagation satisfies a constraint system by successively solv-
ing individual constraints in an order closely associated with the network
topology of the system. Here we generalize local propagation so that it can
solve a set of constraints in one step and also adopt an arbitrary order among
such constraint sets. For this purpose, we introduce ordered partitions as
follows:

Definition 3.1 (ordered partition). A partition of a constraint hierar-
chy is a set P generated by decomposing the hierarchy into disjoint subsets
called blocks. An ordered partition of P is a pair (P, <p), where <p is an
arbitrary partial order among blocks in P.

Obviously, the original constraint hierarchy of P is the combination of all
blocks in P, i.e.

H=|JB.

BeP

For brevity, we write B <p B’ instead of B <p B’ A B # B’ for blocks B
and B’ in P.

Ordered partitions are easily illustrated with diagrams. For instance,
consider the ordered partition (P, <p) consisting of the blocks By, By, ...,
By, as illustrated in Figure 3.1. The partial order <p is defined as the
reflexive transitive closure of all the arrows in Figure 3.1.

Using ordered partitions into blocks, we define generalized local propaga-
tion (GLP) in the following way:

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 27

P
/ \
\

B
\' ./

Figure 3.1: An ordered partition.

Definition 3.2 (generalized local propagation). Generalized local prop-
agation with S is a mapping ws((P, <p)) defined as follows:

ms((P,<p))
(0] if |[P|=0
= ﬂ S(mg(before(B, (P,<p))),B) otherwise,
Beterminals((P,<p))

where terminals and before are as follows:

terminals((P,<p)) = {B'eP|-3B"e€P.B'<p B"}
before(B,(P,<p)) = (P',<p:)

where

P' = {B'eP|B <p B}
<p = {(B',B"YeP xP |B <pB"}.

Intuitively, terminals({P, <p)) is the set of all blocks at terminal positions,
and before(B, (P,<p)) is an ‘ordered sub-partition’ of (P, <p) where all
blocks are before B. For example, reconsider the ordered partition (P, <p)
in Figure 3.1. Here terminals({(P,<p)) is the set {Bg, By} as shown in Fig-
ure 3.2. Also, before(By, (P,<p})) is the pair of the set {Bj, By, B4, B5, B7}
and the partial order defined as the reflexive transitive closure of the black
arrows. Thus, By is satisfied in the set of assignments obtained by applying
GLP to blocks before Bg. Accordingly, we can view GLP as a process that
successively solves each blocks in some order respecting <p. This is always
possible because <p is a partial order.

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 28

AT T T~ > B3
/ e
"/ \
|
|
|
\

\ =
\\\S — // termin;fs' ((P, <p))

before(By, (P, <p))

Figure 3.2: Generalized local propagation.

3.2.2 Properties of Global Hierarchy Comparators

In this subsection, focusing on global hierarchy comparators, we show useful
properties for finding solutions of constraint hierarchies with GLP.

As a first step, we prove the next lemma, which means that by using a
global hierarchy comparator, GLP respects the similarity of variable assign-
ments for ordered partitions that satisfy the conditions below:

Lemma 3.3. Let S be an arbitrary global constraint hierarchy satisfier.
Also, let H be an arbitrary constraint hierarchy, (P,<p) an arbitrary or-
dered partition of H, and 6 an arbitrary variable assignment in wg((P, <p)).

Then, for any assignment 6', if 6’ 209 and

(3.1) VB € P.Vc/l € B.e(c,0) >0
= (VB'eP.B'<pB=V//l'eB.l'<l)

then 0" is in wg((P, <p)).
Proof. By contradiction: Assume that there exists some assignment 6’

which is not in 7g({P, <p)). Then it is necessary that for some block B in P,
0’ is in wg(before(By, (P,<p))), but not in S(wg(before(By, (P, <p))), B1).

B
Because 8' 2 6 holds and S is global, 6 761 0" does not hold. Therefore,

B
9 < ¢ must hold, that is, there exists some level /1 such that

By/l

B/l
MeLi<i=o0" gyne"L"

o'

B/l
This implies that for some block B in P, 6 >1 0’ holds. Since # must be in
S(ws(before(B, (P,<p))), B), at least one of the following two cases must

hold:

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 29

1. Case

¢’ € mg(before(B, (P,<p))) A0 & S(ng(before(B, (P,<p))), B).

B/l

Since 6 >1 0" holds, there must exist some level I such that Iy < [}
B/l,

and 0 < €.

2. Case
0" ¢ ws(before(B, (P,<p))).

Then, for some block B’ in P such that B’ <p B, # is in
ns(before(B', (P,<p))), but not in S(wgs(before(B',(P,<p))),B’).

B/l
Since & > 6’ implies
dc € B/ly. e, (c,0) >0

and also since (3.1) holds, B’ contains only stronger constraints than
B'/l
;. Therefore, there exists some level [such that I, <y and § < ’ 0.

Bi/ly
Beginning with § < ', both of the two cases resulted in that there exist

Bs /1y
some level I and block By such that Is < Iy and & < €'. Clearly, it causes
an infinite sequence Iy, 1o, ... such that I; > [;;. However, since each [; is a
non-negative integer, it is a contradiction. O

Intuitively, Lemma 3.3 says that if GLP using a global satisfier generates
a variable assignment for which constraints with errors have only stronger

constraints before them, then it yields all similar (i.e. H) assignments. Note
that the sufficient condition (3.1) allows constraints without errors to be
placed after weaker ones.

In the following theorem, we prove that such variable assignments are
solutions of the constraint hierarchy:

Theorem 3.4. Let S be an arbitrary global constraint hierarchy satisfier.
Then, for any constraint hierarchy H, ordered partition (P,<p) of H, and
variable assignment 6 in ws((P,<p)), 0 is a solution of H if (3.1) holds.
Proof. By induction on the size of P:

Induction base: If |P| = 0, the proposition holds.

Induction step: Assume that if |P| < n, the proposition holds. Now,
let |P| = n. For any block B in terminals((P,<p)), # must be in

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 30

S(ws(before(B, (P,<p))), B). Therefore, by the induction hypothesis, 8 is
in S(Hp), where Hp is the union of blocks of before(B, (P, <p)). Now, we

assume (for contradiction) that there exists some assignment 6’ such that

, HpUB .
0" < 0, that is, for some level [,

(HgUB)/l (HpUB)/l P

W' eLl<l=¢ A <

Then at least one of the following two cases must hold:

1. Case

, B/l" Hp/l

el one PL oy ne "L .

W eLl <InM"eLl"<l'=¢

H
Then ¢ < 0 holds. Therefore, 6 ¢ S (Hp), which is a contradiction.

2. Case

Hg/l" , B/l" B/l
~ 0 ~

A eLl<INV"eLI"<I'=¢ oA O)NE < 6.

Then, for some labeled constraint ¢/l in B, ey (c,6) > 0 must hold. By

(3.1), Hp contains only stronger constraints than I’. Therefore, 6’ Tz 9
holds. By Lemma 3.3, @' is also in wg(before(B, (P,<p))). However,

B
since 0" < 0 holds, it implies 6 ¢ S(wg(before(B, (P, <p))), B), which
is a contradiction.

Both cases caused contradiction. Therefore, there never exists such ', i.e.
is in S(Hp U B). Since S is global, € is also in S(H) by Theorem 2.10. O

The theorem presents a strategy to design algorithms for solving con-
straint hierarchies. As noted, the sufficient condition permits constraints
without errors to be located after weaker ones. In other words, we can delay
satisfaction of a strong constraint with no error until some appropriate time,
for example, “when the constraint becomes uniquely satisfiable.”

An important instance of such GLP is the refining method. Since con-
straints have no weaker constraints before them in the method, it can be
easily understood by Theorem 3.4 that it generates only correct solutions,
i.e. is sound. In addition, using a certain kind of global hierarchy compara-
tors, the refining method yields all solutions, i.e. is complete:

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 31

Proposition 3.5. Let S be an arbitrary global constraint hierarchy satisfier
such that for any constraint hierarchy H and variable assignments 6 and €',

H
-0 £ 0'. Then, for any constraint hierarchy H, the following holds:
ms({(P,<p)) = S(H)
where

P = {B|lcL}
<p = {(Bl,Bll>EPXP|l§ll}

where By is defined as follows:?
Bi={c/lleH |l =1}.
Proof. Straightforward by Theorem 3.4. |

By this proposition, a refining-method algorithm using a global hierarchy
and globally-better comparator, e.g. least-squares-better, is sound and com-

H
plete, because any globally-better comparator satisfies =8 £ 8.3

3.2.3 Properties of Local Hierarchy Comparators

Using a local hierarchy comparator, we can obtain a theorem with a weaker
sufficient condition than that of Theorem 3.4:

Theorem 3.6. Let S be an arbitrary local constraint hierarchy satisfier.
Then, for any constraint hierarchy H, ordered partition (P,<p) of H, and
variable assignment 6 in ws((P,<p)), 0 is a solution of H if

(3.2) VB € P.Vc/l € B.¢(c,0) >0
= (VB'e P.B'<pB=V/l'e B'.l'<I).

Proof. Similar to that of Theorem 3.4. O

The difference of (3.2) from (3.1) is the existence of equality in I’ < [, which
indicates that (3.2) is weaker than (3.1). Since it will provide more freedom
to organize ordered partitions or schedule constraints, we can expect to
develop more efficient constraint solving algorithms using local comparators.

2B, is not H/l; B; contains labeled constraints while H/I is a set of constraints.
31t is probably possible to weaken the sufficient conditions for level comparators, be-
cause ordered partitions for the refining method are too special.

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 32

3.3 Relationship with the DeltaBlue Algorithm

The results that we obtained in GLP gracefully explain why past local prop-
agation algorithms solve constraint hierarchies, which we believe is an evi-
dence of the usefulness of GLP as a theoretical basis for solving constraint
hierarchies. In this section, we relate GLP with the DeltaBlue algorithm
[22, 58, 76], which is one of the most famous algorithms that maintain con-
straint hierarchies with local propagation.

DeltaBlue expresses constraint hierarchies as constraint graphs, which
are bipartite graphs with variables and constraints as nodes.* In Delta-
Blue, constraints are multi-way. Intuitively, a multi-way constraint can be
uniquely solved for any one of its variables. For example, the constraint

r=y+z

is multi-way because it can be solved for z, y, and z as follows:

T—y+z
YT —2
Z4 T —y.

DeltaBlue refers such an expression for computing a variable value as a
method, and represents each constraint as a set of methods.

The task of DeltaBlue as a local propagation algorithm is, in short,
to determine which constraints in a hierarchy to satisfy, which method to
select for satisfying each constraint, and in what order to compute selected
methods. To guarantee that such a set of selected methods generates a
correct solution, it introduces concepts known as walkabout strengths. In
DeltaBlue, walkabout strengths, associated with variables, are defined to
propagate strengths of the weakest constraints:

Definition 3.7 (walkabout strength [22]). Variable z is determined by
method m of constraint c¢. z’s walkabout strength is the weakest of ¢’s
strength and the walkabout strengths of m’s input.

To see how to compute a walkabout strength, let us quote the example from
[22] as illustrated in Figure 3.3. Here the squares represent constraints, and
the circles indicate variables. Also, the edges mean that variables are con-
strained by constraints connected with the edges, and the directed edges

“In the papers on DeltaBlue [22, 58, 76], they do not associate constraint hierarchies
with bipartite graphs. However, such a connection is often convenient to explain a certain
kind of local propagation algorithms [25].

© 1997 Hiroshi HOSOBE

CHAPTER 3. GENERALIZED LOCAL PROPAGATION 33

strongO

requiredd strongO weakO weakO

Figure 3.3: Walkabout strengths.

show selected methods by pointing output variables. Symbols associated
with constraints give their strengths, and ones attached to variables depict
their walkabout strengths. In this example, the walkabout strength of vari-
able c is strong because the constraint determining c is required and the
walkabout strengths of the inputs a and b to the constraint are strong and
required respectively. Thus walkabout strengths propagate strengths of the
weakest constraints along selected methods.?

With walkabout strengths, a sufficient condition for obtaining correct
solutions of constraint hierarchies can be described, which is called ‘blocked
constraint lemma:’

Definition 3.8 (blocked constraint [22]). A blocked constraint is an
unsatisfied constraint whose strength is stronger than the walkabout
strength of one of its potential output variables.

Lemma 3.9 (blocked constraint lemma [22]). If there are no blocked
constraints, then the set of satisfied constraints represents a locally-predi-
cate-better solution of the comstraint hierarchy.

DeltaBlue can be regarded as an algorithm that maintains the set of selected
methods so that there are no blocked constraints.

We can explain the blocked constraint lemma from the viewpoint of
GLP. A blocked constraint is an unsatisfied constraint such that there exists
at least one weaker constraint that will be solved before the blocked one.
Clearly, the absence of blocked constraints implies the sufficient condition
(3.2) of Theorem 3.6 for GLP with local hierarchy comparators. Thus we
can regard the blocked constraint lemma as a specialization of Theorem 3.6.

®The DeltaBlue algorithm cannot handle cyclic layouts of methods; it will halt if it
finds a cycle.

© 1997 Hiroshi HOSOBE

Chapter 4

The DETAIL Constraint
Solver

This chapter presents a constraint solver called DETAIL, which is the first
local propagation algorithm adopting a global hierarchy comparator.

4.1 Overview

DETAIL is an incremental algorithm for solving constraint hierarchies based
on local propagation. It always stores planning data instead of an appro-
priate ordered partition of the current hierarchy, and modifies the plan if a
constraint is added to or removed from the hierarchy.

DETAIL handles multi-way equality constraints extended so that it can
simultaneously satisfy or properly relax them, in addition to solving them
individually as is with classical local propagation.

The need for simultaneous satisfaction of multiple constraints naturally
arises in GUI applications. For example, consider a situation that a user
attempts to move the midpoint m of two points a and b. The constraints on
z-coordinates are as follows:

(4.1 ax+100 = b.x
2 (ax+bx)/2 = mx
(4.3) m.x = mouse.x.

Obviously, constraint (4.3) should be solved as m.x <— mouse.x. Then, in
traditional local propagation, constraint (4.2) should be either evaluated as
a.x < 2xmx — b.x or b.x + 2 % m.x — a.x. However, both of them results

34

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 35

in cyclic dependency because of (4.1), and therefore, local propagation fails.
To resolve this problem, we need to simultaneously solve (4.1) and (4.2).

The demand for relaxing constraints also often occurs in applications
with GUIs. A typical example is that a user moves an object a constrained
to be on an almost horizontal or vertical line, e.g.

(4.4) ax = 10xay
(4.5) a.x = mouse.x
(4.6) a.y = mouse.y.

If the user arbitrarily moves the mouse, all of these constraints cannot be sat-
isfied at the same time. A solution may seem to discard either of constraint
(4.5) or (4.6), which is possible with past constraint hierarchy solvers us-
ing locally-predicate-better by assigning weaker strengths to (4.5) and (4.6)
than the strength of (4.4). However, if (4.5) is ignored, the user will find
difficulty in moving the object a, because the mouse movement in its y-
coordinate will make the movement of the z-coordinate of a 10-fold due to
(4.4). Therefore, a natural solution is to relax constraints (4.5) and (4.6)
using a global comparator such as least-squares-better.

To simultaneously satisfy or properly relax constraints, DETAIL main-
tains a set of comstraint cells instead of an ordered partition into blocks. A
constraint cell can be regarded as a block including output variables, where
the constraints in the block are uniquely solved for the output variables.
Also, it never shares variables with any other cells. DETAIL solves con-
straint cells with pluggable numerical modules called subsolvers using, e.g.,
Gaussian elimination.’

For example, to solve the constraint strong z + y = 3 for variable z,
DETAIL yields a cell of strong z + y = 3 and = as shown in Figure 4.1 (a),
where the circles and square represent the variables and constraint respec-
tively, and the box with round corners indicate the cell. By contrast, to
simultaneously solve strong = +y = 3 and weak z —y = 1, it generates a cell
of the two constraints and the variables z and y as depicted in Figure 4.1
(b). Similarly, to relax strong x = 0 and strong z = 2, it produces a cell
consisting of the two constraints and z as illustrated in Figure 4.1 (c).

By the definition of constraint cells, we can determine dependency among
cells. Additionally, if we prohibit cyclic dependency, we can naturally iden-
tify the overall dependency among cells with a partial order among blocks.
Then we can perform GLP in a ‘unique’ manner as is with conventional local

!The SkyBlue algorithm also realizes simultaneous satisfaction by invoking ‘cycle
solvers,” but provides no features for relaxing constraints [72, 73].

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 36

strongd
AEBE0!

strongO weakO
ABEE0O A0

strongd strongO
200 =200

© || —o—]

Figure 4.1: Constraint cells.

required mediu
z

0
O

Figure 4.2: A configuration of constraint cells.

propagation. For example, consider the hierarchy with the constraints a, b,
..., hin Figure 4.2. Clearly, in the order respecting the cell dependencies,
such as A, B, H, G, and E, we can uniquely solve constraints in each cell.

In the remainder of this chapter, we first present graph-formalized con-
straint hierarchies, and then describe the DETAIL algorithm and constraint
solver.

4.2 Formulation

In this section, we formalize constraint hierarchies as graphs. The point is

that we construct a certain kind of graphs that approximates satisfaction of

constraint hierarchies by simulating GLP without algebraic concepts.
First, we define constraint graphs as follows:

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 37

Definition 4.1 (constraint graph). Given a set H of labeled constraints,
the constraint graph of H is a bipartite graph (X, H, F) with sets X and H
of nodes and a set E of edges, where

X = {z €eX|3/leHzecX(c)}
E = {(z,¢/l) e XxH|zecX(c)}

In other words, a constraint graph consists of two kinds of nodes X and H
corresponding to variables and labeled constraints respectively and edges E
representing connections between variables and constraints.

In Definition 4.1, we consider that H is not a multi-set but an ordinary
set, as opposed to the definition of constraint hierarchies in Chapter 2; that
is, H does not contain multiple copies of a single labeled constraint. Similar
to other local propagation algorithms, the DETAIL algorithm does not treat
constraints as algebraic concepts. Therefore, it is not restrictive to suppose
that labeled constraints are distinct objects.

Next, we define constraint cells, cell configurations, and propagation
graphs as follows:

Definition 4.2 (constraint cell). Given a constraint graph (X, H, E), a
constraint cell in (X, H, E) is a set of variables in X and labeled constraints
in H.

Definition 4.3 (cell configuration). Given a constraint graph (X, H, E),
a cell configuration for (X, H, E) is a set P of constraint cells in (X, H, E)
such that

VBeP.VB e¢P.B 4A#B=BnNB =10
and

UB=xUH.
BeP

Definition 4.4 (propagation graph). Given a constraint graph (X, H, F)
and a cell configuration P for (X, H, E), a propagation graph of (X, H, E)
with P is the quadruple (X, H, E, P).

Intuitively, a cell configuration for a constraint graph consists of constraint
cells containing variables and labeled constraints. Also, in a cell configu-
ration, distinct cells do not share variables and labeled constraints, and all
variables and constraints belong to some cells. We refer constraint graphs

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 38

with a cell configuration as propagation graphs. Clearly, we can illustrate
propagation graphs as shown in Figure 4.2.

The following definitions provide conditions that “variables are con-
strained” and that “labeled constraints are active:”

Definition 4.5 (constrained variable). Given sets X, H, and E of vari-
ables, labeled constraints, and edges, constrained(X, H, E) is defined as fol-
lows:

constrained(X,H,E) =VX' C X.|X'| < |I'y(X',H, E)|
where
I'y(X',H,E)={c/le H| 3z € X'.(z,c/l) € E}.

Definition 4.6 (active labeled constraint). Given sets H, X, and E of
labeled constraints, variables, and edges, active(H, X, E) is defined as fol-
lows:

active(H,X,E)=VH' C H.|H'| < |I'x(H', X, E)|
where
I'x(H,X,E)={z € X | 3¢/l € H'.(z,c/l) € E}.

Intuitively, constrained(X, H, E) means that variables in X are constrained
by labeled constraints in H, and active(H, X, E) indicates that labeled con-
straints in H are active in constraining variables in X. Both of the defini-
tions are based on an operation called ‘perfect matching’ in graph theory
[13]. For a bipartite graph, the matching operation makes pairs of different
kinds of nodes, and perfect matching is a matching providing all nodes of one
kind with their partners. In Definition 4.5, if constrained(X, H, E) holds,
all variables in X can be matched with distinct labeled constraints in H; in
other words, for each variable, some labeled constraint can output a value
to it. Also, in Definition 4.6, if active(H, X, E) holds, all constraints in H
can be matched with different variables in X; that is, for each labeled con-
straint, there exists a variable that needs the constraint to obtain its value.
The conditions for defining constrained(X, H,E) and active(H, X, E) are
known as Hall’s theorem in graph theory, which dictates existence of perfect
matching.

Using active(H, X, E) together with strengths, the following definitions
classify labeled constraints into three situations, ‘satisfied,” ‘unsatisfied,” and
‘relaxed:’

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 39

Definition 4.7 (satisfied labeled constraint). Given a constraint graph
(X,H,E) and a constraint cell in (X, H, E), Hs(B,(X, H,E)) is defined as
follows:

Hy(B,(X,H,E)) = {c/l € B| active(H',BN X, E)}
where
H={//leBnH|I<I}.

Definition 4.8 (unsatisfied labeled constraint). Given a constraint
graph (X, H, E) and a constraint cell in (X, H, E), H,(B,(X,H, E)) is de-
fined as follows:

Hy(B,(X,H,E)) = {c/l € B| —active(H',BN X,E)}
where
H ={c/l}u{d/l' e BNH |l <I}.

Definition 4.9 (relaxed labeled constraint). Given a constraint graph
(X,H,E) and a constraint cell in (X, H, E), H:(B,(X,H, E)) is defined as
follows:

H.(B,(X,H,E))=(BNH)— (Hs(B,(X,H,E)) U Hy(B,(X,H, E))).

Intuitively, we can make all satisfied labeled constraints active in their cell.
By contrast, we cannot make any unsatisfied constraint active when we try
to make all stronger constraints active. On the other hand, we can make a
relaxed constraint active together with all stronger constraints.

The next definition presents an important class of propagation graphs
called ‘non-redundant propagation graph:’

Definition 4.10 (non-redundant propagation graph). A propagation
graph (X, H, E,P) is non-redundant iff for any constraint cell B in P, either
of the following conditions hold:

. IBNX|=1 A |[BNH|=0
(4.8) IBNX|=0 A |[BNH|=1
(4.9) constrained(BNX,BNH,E) AN Hy(B,(X,H,E))=0.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 40

Non-redundant propagation graphs specially treat unconstrained (i.e. not
constrained) variables and unsatisfied labeled constraints; each uncon-
strained variable constitutes a cell alone, and each unsatisfied labeled con-
straint belongs to a cell only for it. Therefore, we can easily find uncon-
strained variables and unsatisfied constraints in non-redundant propagation
graphs.

The following definition gives a convenient notion that a cell is a successor
to another cell in a propagation graph:

Definition 4.11 (successor constraint cell). Given a propagation graph
(X, H, E,P) and two constraint cells B and B' in P, succ(B', B, (X, H, E, P))
is defined as follows:

B #BA3x e B.3c/l e B.(z,c/l) € E.

Intuitively, succ(B', B, (X, H, E,P)) indicates that B’ is a successor to B in
(X,H,E,P). The definition says that the value of the variable z in B is
used by the labeled constraint ¢/l in B'.

The next defines another important class of propagation graphs called
‘acyclic proration graph:’

Definition 4.12 (acyclic propagation graph). A propagation graph
(X,H,E,P) is acyclic iff there does not exist any sequence By, Bs, ...,
B,, of constraint cells in P such that B; = B,, and for any ¢ s.t. 1 <17 < n,

suce(Bit1, Bi, (X, H, E, P)).

Intuitively, acyclic propagation graphs do not have cyclic dependency of
constraint cells; that is, cells are partially ordered.

Below we define walkabout strengths of constraint cells using internal
strengths. As noted in Section 3.3, walkabout strengths were first introduced
in the DeltaBlue algorithm [22, 58, 76], but we extend their definition to
match them with our purpose:

Definition 4.13 (internal strength). Given a constraint cell B, the in-
ternal strength of B, denoted as internal strength(B), is defined as follows:

internal strength(B)
Iy +1 if BN(C xL)=10
max{l € L | 3c € C.c/l € B} otherwise.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 41

Definition 4.14 (walkabout strength). Given an acyclic propagation
graph (X, H, E,P) and a constraint cell B in (X, H, E,P), the walkabout
strength of B, denoted as walkabout_strength(B, (X, H, E,P)), is defined as
follows:

walkabout_strength(B, (X, H,E,P))

= max({internal strength(B)} U
{le L|3B" € P.succ(B,B,(X,H,E,P)) A
walkabout_strength(B', (X, H, E, P)) = l}).

By definition, the internal strength of a constraint cell with one or more
labeled constraints is the strength of the weakest constraint(s), and the
internal strength of a cell with no labeled constraints is Iy + 1, which is
weaker than any strengths. Walkabout strengths of cells are defined so that
they propagate the weakest internal strengths, that is, the strengths of the
weakest constraints in some cells. Although walkabout strengths are defined
recursively, they are always uniquely determined because they are defined
for acyclic propagation graphs.

Now, we define globally-graph-better (GGB) propagation graphs so that
such propagation graphs can be regarded to generate solutions with local
propagation:

Definition 4.15 (GGB propagation graph). Given an acyclic, non-
redundant propagation graph (X, H,E,P), (X,H,E,P) is a GGB prop-
agation graph if

(4.10) VB € P.Ve/l € B.c/l ¢ Hs(B,(X,H, E))
= (VB' € P.succ(B,B,(X,H,E,P))
= walkabout_strength(B', (X, H, E,P)) < 1).

In other words, in GGB propagation graphs, any relaxed or unsatisfied con-
straints have only stronger constraints before them. Obviously, it corre-
sponds to Theorem 3.4. Therefore, we claim that GGB propagation graphs
simulate ordered partitions that obtain solutions.

As an example of GGB graphs, consider the propagation graph illus-
trated in Figure 4.3, where walkabout strengths are attached to cells. In
this graph, although the weak constraints c and e in F are relaxed, the
walkabout strengths required and medium of the preceding cells A and G
indicate that all the forward constraints are stronger than weak. Therefore,
we can obtain a correct solution by applying local propagation to the graph.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 42

required A weak B H

required weak required
t=1 1 t=u 1
L — O —®
'R

o0
1

weak strong 2 3 strong
v=20 t+v=w w ==z z 4y =z

weak E medium G medium

Figure 4.3: A GGB propagation graph.

4.3 Algorithm

This section describes the DETAIL algorithm for solving graph-formalized
constraint hierarchies defined in the previous section.

In GUI applications, it is often necessary to repeatedly evaluate the same
constraints in a propagation graph. For example, while a user is dragging
a visual object, constraints related to the object need to be re-evaluated to
cope with the user’s real-time interaction. Therefore, most constraint solvers
for GUISs, including DETAIL, adopt two-phase constraint satisfaction, which
consists of planning and ezrecution. Intuitively, the planning phase obtains
an internal data structure for constraint systems, and the execution phase
computes actual values for variables using the data structure constructed by
planning.

4.3.1 The Planning Phase

The task of the planning phase of the DETAIL algorithm is to incrementally
maintain a GGB propagation graph. Initially, the propagation graph has no
variables and no constraints, and DETAIL appropriately modifies the graph
when variables or constraints are added or removed.

Adding a Variable

First, we describe how to add a variable z to a GGB propagation graph
(X,H,E,P). It is only to add z to the set X of variables and also add a
new cell with the variable, {z}, to the cell configuration P. The resulting
GGB propagation graph is

(X U{z}, H,E,PU{{z}}).

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 43

Removing a Variable

Next, we provide how to remove an existing variable z from a GGB propaga-
tion graph (X, H, E, P). DETAIL reports an error indicating that x cannot
be removed if there exists some labeled constraint ¢/l such that (z,c/l) € E
(that is, z is referenced by a constraint). Otherwise, it generates the GGB
graph

(X —{z},H,E,P — {{z}}).

Note that P must contain {z} as an element since (X, H, E,P) is GGB and
therefore non-redundant.

Adding a Constraint

We show the algorithm for adding a new labeled constraint ¢/l to a GGB
propagation graph (X, H, E,P). There are the following three cases in this
process:?

e ¢/l will remain unsatisfied since it is weak. In this case, the propa-
gation graph will be almost unchanged, but will only be added a new
cell with ¢/I.

e ¢/l will be relaxed since there are one or more conflicting constraints
with the same strength [. In this case, ¢/l will be inserted to the cell
with the equal-strength constraint(s) to be relaxed together. Also, the
satisfied constraints between ¢/l and the equal-strength constraint(s)
will be also added to the cell.

e ¢/l will be satisfied since it is strong enough to revoke another one or
more weaker constraints. In this case, the dependencies between ¢/l
and these weaker constraint(s) will be reversed to propagate the value
from c¢/I, and the weaker constraint(s) will be relaxed or unsatisfied.

add_constraint(c/l, (X,H,E,P)) in Figure 4.4 is the pseudo-code
for adding a new labeled constraint ¢/l to a GGB propagation graph
(X,H,E,P). In this pseudo-code, B.walkabout strength indicates a field
of B previously calculated by DETAIL as the walkabout strength of B. Also,
variables for cells such as Bpeyw and By are represented as pointers; even

%If we handle ordinary (not graph-formalized) constraint hierarchies, there will be the
case that ¢/l is already satisfied. However, we do not consider such a case because of the
formulation of constraint hierarchies for the DETAIL algorithm.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 44

if their contents are modified, we mean that they are still pointing to the
modified cells.

Now, we explain add _constraint. First, at lines 3 and 4, it modifies
the sets H and E so that they reflect the information on the newly added
constraint ¢/l. Next, at lines 5 and 6, it inserts a new constraint cell Bpew
only with ¢/l to make an initial configuration. At line 7, it obtains the
weakest walkabout strengths Iy;. of constraint cells preceding Bpew. At lines
8-20, it runs in three ways according to the relations between li. and I:

e Case lyic < [(lines 9 and 10). It leaves Bpew as it is, and does not
further modify the propagation graph.

o Case lyic = (lines 13 and 14). It keeps Bpew as Byic to relax ¢/l later
at line 22.

e Case lyic > [(lines 17-19). At line 17, it reverses dependency between
Bhew and some cell by calling reverse dependency, which we describe
later. Also, it sets the return value of reverse_dependency to Byic; if
it is non-nil, it represents a cell that should be relaxed later at line 22.
Then, at line 18, it merges cells that have cyclic dependency because
of the previous reverse operation. It is a simple algorithm that only
collects cyclic cells after Bpew with marking and that merges them
into a single cell. Then, at line 19, it traverses cells after Bpew and
recalculate their walkabout strengths.

Finally, at lines 21 and 22, if By;. is non-nil, it traverses cells before Byi. and
merges cells with walkabout strength ;.

Next, we briefly explain the algorithm of reverse dependency, which is
presented in Figure 4.5. Basically, it is a recursive function that traverses
a single cell in each step. On entry into the function, B consists of only
one constraint. First, at lines 3 to 6, it finds a preceding cell Byreq with
walkabout strength ly;c, and moves a variable in Bpeq to B, which makes B
a pair of a variable and a constraint. Next, it branches into the following
three cases:

o Case Bpreq = 0 (lines 8 and 9). It indicates that Bpreq initially contains
only one variable; that is, the variable is unconstrained. Therefore, the
algorithm does not need to further modify the graph.

o Case internal strength(Bpreda) = lvic (line 12). It means that Bpeq con-
tains one or more constraints to be relaxed or unsatisfied. Accordingly,
the algorithm separates the constraint(s) to be relaxed or unsatisfied

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 45

{

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 }

add_constraint(c/l, (X,H,E,P))

H «+— HU{c/l};
E+ EU(X(c)x{c/l});
Bhew {C/l}§
P < PU{Bpew}:
lvic < max{l' € L | 3Bprea € P. succ(Bpew, Bpred> (X, H,E,P))
A Bpred -walkabout_strength=1'};
if lyic <! then {
Bhpew - walkabout_strength < [;
Byic ¢ nil;
}
else if [y =1 then {
Bhew - walkabout_strength < [;
Byic < Buews
}
else { // Lyc>1
Byic < reverse_dependency (Bhew, (X, H,E,P), lyi);
merge_cycles(Bpew, (X,H,E,P));
update_walkabout_strengths (Bhew, (X,H,E,P));
}
if Byic # nil then
merge_cells_to_relax(Byic, lvic);

Figure 4.4: Adding a constraint.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 46

1 reverse_dependency(B, (X,H,E,P), lyic)

2 {

3 select Bped € P s.t. succ(B, Bpred, (X,H,E,P))
A Bpred -walkabout_strength = [ic;

4 select z € Bpreq s.t. Jc/l € B.(z,c/l) € E;

5 Bpred ~ Bpred - {'77},

6 B+ BU{z};

7 if Bpred =0 then {

8 PP —{Bpred};

9

return nil;

10 3}

11 else if internal_strength(Bpreq) = lyic then
12 return decompose_cell(Bpyreq, (X, H,E,P));
13 else {

14 select ¢/l € Bpred s.t. IBpredpred € P -

succ (Bpred s Bpredpred s <Xa H, Ev P>)
N Bpredpred - Walkabout_strength = ly;c;
15 Bpred < Bprea — {¢/1};
16 decompose_cell(Bpred, (X, H,E,P));
17 Buew « {c/l};
18 P« PU{Bnew};
19 return reverse_dependency (Bnew, (X, H,E,P), lic);
20 }
21 }

Figure 4.5: Reversing the dependency between constraint cells.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 47

by invoking decompose _cell. Basically, decompose cell finds a max-
imum matching of constraints with variables and generates a cell for
each pair. To guarantee stronger constraints to be matched, it pro-
cesses stronger constraints in advance. Since the propagation graph
was initially GGB, it is possible to match all constraints stronger than
lyic- On exit, decompose_cell returns a cell consisting of a constraint
with strength lyi., and also reverse _dependency returns the cell to
relax it later if possible.

e Otherwise (lines 14-20). First, at line 14, it finds a labeled constraint
¢/l in Bpreq that bridges to a preceding cell with walkabout strength
lyic. Then, at lines 15 and 16, it deletes c/I from Bpreq and decompose
the resulting Bpreq (in this case, each constraint in Bpreq can always
be matched with some variable). Next, at lines 17 and 18, it creates a
new cell Bpew with ¢/l, and finally, at line 19, it recursively calls itself
to further process Bpey-

Now, we demonstrate the DETAIL algorithm by example. Figure 4.6
(a) illustrates the initial propagation graph, and suppose that we add a new
constraint h, medium z = 7, to it. The current solution z = 3 conflicts with
h, and the walkabout strength weak of G shows that there is one or more
weak constraints in or before G.2> Therefore, we must alter the propagation
graph in the following steps:

1. First, move along the path from the new cell to the source of the walk-
about strength, i.e. from H to E, reversing the dependency between
them, as shown in Figure 4.6 (b). Now, the newly added constraint h
becomes satisfied.

2. Next, merge cyclic dependencies generated from the previous step if
any. In the example, we collapse the cycle of G’ and F as illustrated
in Figure 4.6 (c).

3. Third, check whether the ‘victimized’ cell E’ has any forward cells
with the same walkabout strength weak. Figure 4.6 (c) shows that
D is such a cell. Since it violates the sufficient condition for GGB
propagation graphs, merge all the transitively adjacent cells with the
same walkabout strength, i.e. E', D, and C (but not B). Then, we
obtain the final propagation graph in Figure 4.6 (d).

3 As noted, the actual DETAIL algorithm does not check such a conflict of the added
constraint with the current solution, but only examines the strength of the added con-
straint and walkabout strengths of related cells.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER

required A weak B weak F __H_
required weak required ! “medium
z+1=y 2 z =17

t=1

strong

0

(a‘) strong
v = t+v=w w =z e +y=z
weak C weak D weak E weak G
required A weak B weak F H'
required weak required medium
z+ 1=y

t=1

strong

0

(b) strong
v =0 t+v=w z +y = z
weak C weak D E' a'
required A weak B H'
required weak required medium
z+ 1=y 7

t=1

0

(C) strong
v=0 t+v=w
weak C weak D weak medium e medium
required A weak B H'
required weak required medium

=1

weak E" medium e

Figure 4.6: Adding a constraint to a constraint hierarchy.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 49

Removing a Constraint

Finally, we describe how to remove an existing labeled constraint ¢/l from a
GGB propagation graph (X, H, E,P). We can consider the following three
cases:

e ¢/l constitutes its own cell alone. It means that ¢/l is unsatisfied.
Obviously, it is sufficient to only remove the cell from the graph.

e ¢/l belongs to a cell where each constraint is satisfied. It implies that
removing ¢/l from the cell will generate an unconstrained variable.
Therefore, it is necessary to find one or more relaxed constraints or
one unsatisfied constraint that has been after ¢/l in the graph, and to
try to satisfy or relax such constraints. The former process can be ac-
complished by traversing the propagation graph from the cell formerly
with ¢/l and finding the strongest relaxed or unsatisfied constraints.
The latter process can be realized by applying an algorithm similar to
adding a constraint.

e ¢/l is contained by a cell that has one or more relaxed constraints.
Then deleting ¢/l from the cell needs to produce a set of constraint
cells that have satisfied or relaxed constraints. It can be done in a
similar way to decompose cell.

4.3.2 The Execution Phase

The task of the execution phase is to compute variable values based on the
GGB propagation graph obtained by the planning phase. Its algorithm is
to apply topological sort to the propagation graph and then to solve each
constraint cell in the partial order obtained with the sort.

4.4 Implementation

Based on the algorithm in the previous section, we developed the DETAIL
constraint solver in Objective C. It consists of two layers, a main solver and
a set of subsolvers. The main solver maintains a GGB propagation graph in
the planning phase and applies topological sort to it in the execution phase.
By contrast, subsolvers obtain variable values by solving constraint systems
locally in individual constraint cells. During the execution phase, the main
solver invokes an appropriate subsolver for each cell, based on constraints
in the cell.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER 50

In the implementation of the DETAIL constraint solver, we slightly mod-
ified the algorithm presented in the previous section so that it can handle
local level comparators as well as global level comparators. As shown in our
formulation of constraint hierarchies in Chapter 2, we can adopt a ‘hybrid’
hierarchy comparator with different level comparators to solve constraint
hierarchies. This modification is theoretically realized by changing the suf-
ficient condition of Definition 4.15 for local level comparators in a similar
way to Theorem 3.6.

Using this technique, we implemented two subsolvers: one that treats
linear equality constraints or multi-way constraints solved with the local
level comparator with the predicate error function, and one that handles
linear equality constraints satisfied with the least-squares level comparator.

DETAIL is actually used as a constraint solver in a programming-by-
example system called IMAGE, which generates GUIs by generalizing mul-
tiple sets of application data and its visualization examples [61].

4.5 Performance Evaluation

Using the chain benchmark [76], we compared the performance of the DE-
TAIL constraint solver implemented in Objective C with that of the Delta-
Blue constraint solver implemented in C. We executed the benchmark pro-
gram on a NeXTstation TurboColor workstation with a 33 MHz Motorola
68040 processor.

In the chain benchmark, the constraint hierarchy initially contains the
required constraints z¢9 = z1, £1 = ©32, ..., Tn_2 = T,_1 and the constraint
weak stay(zo). The chain benchmark measures the planning time to add
the constraint strong edit(z,_1) to the hierarchy, and also measures the
execution time to compute variable values when the value of z,,_1 is changed
through edit(z,—1). Both of the planning phase and the execution phase
are the worst cases where the overall propagation graph must be processed.

Table 4.1 shows the result: while the planning time of DETAIL is almost
four times as long as that of DeltaBlue, the execution time is nearly twenty
times as long. The main handicaps of DETAIL are the complex data struc-
ture of constraint cells, and dynamic binding of methods in Objective C.*
We believe that dynamic binding caused slowdown in performance because
the source program involves numerous message sends with dynamic binding.
If we re-implement the DETAIL constraint solver in C++, its performance
is expected to approach that of DeltaBlue.

4Objective C does not support static binding like C++.

© 1997 Hiroshi HOSOBE

CHAPTER 4. THE DETAIL CONSTRAINT SOLVER

n 1000 2000 3000 4000 5000
DeltaBlue planning 67 166 250 350 434
execution 2.5 4.3 6.7 8.7 10.8
DETAIL planning 283 617 933 1183 1817
execution | 36.7 68.3 105.0 140.0 176.7

Table 4.1: Times in milliseconds to perform the chain benchmark.

© 1997 Hiroshi HOSOBE

51

Chapter 5

Hierarchical Linear Systems

This chapter formalizes hierarchical linear systems (HLSs) as a specialization
of constraint hierarchies in linear equality constraints, and provides several
basic algorithms for solving HLSs.

5.1 Motivation

Most constraint hierarchy solvers for GUIs, including DETAIL, are based on
local propagation that handles multi-way constraints. By contrast, a small
number of numerical solvers for GUIs are available. Therefore, most system
developers currently use constraint solvers based on local propagation.

Although we showed that local propagation approach can be extended
with the DETAIL algorithm, it has still disadvantages compared to numeri-
cal methods in handling algebraic constraints.! In fact, even for linear equa-
tions, local propagation solvers sometimes obtain incorrect solutions and in
worse cases abort with fatal errors. These problems come from the essential
difference between linear equations and multi-way constraints. Previously,
the problem was mainly considered to be due to the inability of local propa-
gation to simultaneously satisfy multiple constraints, which would appear as
directed cycles of methods. Researches, including DETAIL, have been made
to overcome this problem [72, 73], but they turned out to be insufficient to
solve all the problems regarding linear equations.

!By local propagation, we mean algorithms for graph-formalized constraint systems,
not generalized local propagation (GLP). Unlike local propagation algorithms, GLP can
express various strategies for constraint satisfaction as a theoretical framework. For exam-
ple, remember that GLP dictated the correctness of the refining method in Proposition 3.5

52

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 53

Even local propagation solvers that allows such cyclic dependencies, in-
cluding DETAIL and SkyBlue [4], cannot handle cyclic dependencies with
redundant or conflicting constraints. As an example, consider the following
constraint hierarchy:

(5.1) strong z+y=1
medium z +y = 3

weak x—y=1.

Theoretically, satisfying (5.1) and (5.3), it yields a solution x = 1 and y = 0.
However, local propagation solvers cannot find the correct solution because
they select (5.1) and (5.2). In some cases, this problem is extremely seri-
ous. For instance, automatically generated constraints tend to be redun-
dant or inconsistent, which we actually experienced in development of the
programming-by-example system IMAGE [61]. However, redundancy and
inconsistency are essentially difficult to deal with in local propagation algo-
rithms.

Local propagation also embodies a problem related to the efficiency
of incremental satisfaction of simultaneous constraints. Local propagation
solvers supporting simultaneous constraints, e.g. SkyBlue and DETAIL, gen-
erate large cycles or constraint cells when they need to simultaneously satisfy
many constraints. The problem is that they cannot always create, modify, or
destroy such large cycles or cells incrementally: adding a new constraint to
a system with no cycles may suddenly yield a large cycle; also, removing an
exiting constraint from a system with a large cycle may decompose the cycle
into pieces of constraints. Nevertheless, whenever a solver encounters such
a case, it needs to perform special treatment of a cycle, which is considered
to degenerate its performance.

In addition to the demand for addressing such problems, we are now
encountering a new trend that constraint hierarchy algorithms are differ-
entiated into two levels: ‘meta’ algorithms [10] and specialized algorithms
[6]. A meta algorithm maintains the whole constraint hierarchy. Intuitively,
it divides the hierarchy into a set of ‘sub-hierarchies’ based on its graph
topology, making appropriate specialized algorithms actually solve the sub-
hierarchies. Since developing an efficient, general algorithm is quite difficult,
this trend will likely be the mainstream, strengthening the need for efficient
specialized algorithms.

In this chapter, we show how to solve hierarchies of linear equality con-
straints efficiently. For this purpose, we construct the theory of hierarchical
linear systems (HLSs), which can be viewed as a ‘sub-theory’ of constraint

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 54

hierarchies specialized in linear equality constraints. To our knowledge,
this theory is the first sub-theory for linear equality constraints, although
there have been ones proposed for multi-way constraints [72]. HLSs have a
formally strict relation with the original constraint hierarchies. After pre-
senting the theory, we give basic algorithms for HLSs.

5.2 Totally-Ordered Hierarchical Constraint Sys-
tems

Before presenting HLSs, we formalize totally-ordered hierarchical constraint
systems (TOHCSs). In their definition, we do not focus on specific kinds
of constraints, which is similar to the formulation of constraint hierarchies.
In the next section, we formulate HLSs by specializing TOHCSs in linear
equality constraints.

The definition of TOHCSs is the following:

Definition 5.1 (TOHCS). A TOHCS is a pair (Cyp,C) of a set Cy =
{c9,6,... ,c?no} of my constraints and an ordered set C' = {c1,c2,... ,cm}
of m constraints.

Intuitively, ¢, 3, ..., c?no are required constraints?, and ¢i, ca, ..., Cm

are preferential ones, where the first constraint has the strongest effect on
determining solutions of the TOHCS, and the more backward the constraint,
the weaker its effect; we strictly define it in Definition 5.2.

In the same way as constraint hierarchies, we evaluate errors of con-
straints using an error function e. Given a constraint ¢ and variable assign-
ment 6, e(c,0) indicates the error of ¢ for variable values presented with
0.

Using e, we define solutions of TOHCSs as follows:

Definition 5.2 (solution). Given an TOHCS (Cy, C), the solution set of
(Co, C) is

S(<Co,C>) = {9 €Sy | ve' e So.E(C, 9) <Yex E(C, 9’)}
where

So = {8€@|V)eChe(d,0) =0}
E(C7 0”) = (e(C]_, 0”)’ 6(627 9”)7 D) e(cma 9”))

2 Although we omitted required constraints in our formulation of constraint hierar-
chies for simplicity, we incorporate required ones in TOHCSs and HLSs; in solving HLSs,
required constraints are useful for improving the efficiency.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 55

and <jex is a lexicographic order, i.e. u <jex v is
U =jex ¥ = Vi. Jug| = |vj]
or
U <jex v = Fi. (Vi' <. Jug| = |vg|) A |ug| < |vgl.

Intuitively, <jex ‘hierarchically’ compares two vectors expressing errors, and
the solution set of (Cp,C) is the set of all assignments satisfying Cp that
result in the minimum errors with respect to C in the sense of <jex.

TOHCSSs are simple HCSs that hold preferential constraints in total or-
der. Unlike constraint hierarchies, they have no levels that contain con-
straints with equal preferences except the required one. However, if we
solve constraint hierarchies with locally-better, we can convert them into
TOHCSSs as shown in the next proposition:

Proposition 5.3. Let H be a constraint hierarchy whose levell (0 <1 <ly)
consists of my constraints cé (1 <i<my), and S be the set of all locally-
better solutions of H. Let (Cy,C) be a TOHCS, where

Co=1{,c3,... ,c?no}
. . . . l
the i-th constraint in C 1is Ci (matetmy 1) forl s.t.

my 4 dmy g <i<my A+ -y

and S' be the solution set of (Co,C). Then S’ C S.

Proof. Let 6 € S’. Assume, for contradiction, # ¢ S. Then there exists

H ' H/l
some #' such that 6’ < 6. Hence, for some [, VI' < 1.6 HY 9 and 0 < 6
hold, i.e.

(VI' < L.Vi.e(d ,0') = e(d,0)) A
(Vi.e(d,0') <e(c,0) A (Fi.e(d,8) < e(c,9)).
Let ¢* be the minimum index that satisfies
e(c,0) < e(ck,0).
Then, for all ¢ < 7*,
e(c,0') =e(c,0).

Thus E(C,0") <iex E(C,0), which is contradiction to § € S'. Therefore,
fes. O

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 56

In other words, the TOHCS obtained by ‘serializing’ the preferential con-
straints in a constraint hierarchy yields a subset of solutions of the original
hierarchy. Therefore, if we do not need all solutions, we can use TOHCSs
instead of constraint hierarchies. Such a situation is common in various ap-
plications, e.g. graphical user interfaces that usually need only one solution.
Therefore, we believe that the notion of TOHCSs is useful as an alternative
method to handle constraint hierarchies.

Essentially, TOHCSs are equivalent to ordered constraint hierarchies
[94], which make constraints totally ordered inside levels. However, we be-
lieve that eliminating the concept of levels is more convenient for designing
algorithms, which we show in the rest of this chapter.

5.3 The Theory of Hierarchical Linear Systems

In this section, we specialize TOHCSs in linear equality constraints, and
derive their unique properties from the fact that they consist of linear equa-
tions.

5.3.1 Formulation
First, we define hierarchical linear systems (HLSs):

Definition 5.4 (HLS). Let & be a column vector of variables. An HLS is
an TOHCS (Cy, C), where Cj is a set of linear equality constraints alz = ¢?,
and C is an ordered set of linear equality constraints a;x = ¢;.

Since HLSs are TOHCSs, Definition 5.2 determines their solutions. For
this purpose, we need error functions for linear equations. In the same
way as constraint hierarchies, we can adopt the predicate and metric error
functions. Given linear equality constraint ax = ¢, the metric error function
e is defined as follows:

)T

e(ax =c,0) = |a(fzy Oz ... Oz,)" — |

Also, the predicate error function e is given as follows:

0 if a(fzy Oz, ... Hxn)T =c
1 otherwise

e(ax =c,0) = {

Since writing (Az1 Oz ... Omn)T is rather complicated, in the rest of this
dissertation, we also write @ to indicate a vector with actual values, without

using an assignment.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 57

For convenience, we use an abbreviated notation for HLSs. Given an
HLS (Cy, C), we express Cy as (Ap ¢p), i.e.

0 0 0 0 0 0

a(]j C(]j a/(]jl a,(1]2 ce a(]jn C(]j

a; G a1 G -t Gy, | G
(Ao co) =) : =) : : :
0 0 0 0 0 0

Ay Cmg Aol Ump2 " Cmgn | Cmyg

and represent C as (4 c¢), i.e.

ai C1 ail a2 et ain C1

az ¢ az1 az -+ Qg | C2
(Ae)= . . =

Ay Cm Aml AGm2 *°° Qmn | Cm

Thus we denote such an HLS as ((4¢ ¢o), (4 ¢)). Werefer a = (a1 a2 -+ a;)
as the coefficient vector of ax = ¢, Ay and A as coefficient matrices, and
(Ag cp) and (A ¢) as extended coefficient matrices.

For simplicity, we often focus on HLSs consisting only of preferential
constraints. In such a case, we simply write (A ¢) as an HLS.

5.3.2 Properties of Hierarchical Linear Systems

In this subsection, we derive unique properties of HLSs from the fact that
they consist of linear equations. For simplicity, we consider HLSs consisting
only of preferential constraints.

First, we show a necessary and sufficient condition for obtaining solu-
tions:

Theorem 5.5. For any HLS (A c¢), « is a solution of (A c) iff
(5.4) Vi.— hdep(A,i) = a;x = ¢;

where hdep(A,i) (the i-th row of A is hierarchically dependent) is defined
as follows:

hdep(A, ’L) = doyday -+ - Jaj_1.a; = a1a; +asag + -+ + ;_105_1.

Proof. First, we show that @ is a solution if (5.4) holds. Let @ satisfy (5.4).
Assume, for contradiction, that @ is not a solution. Then there exists some
y such that

Ay —c <jex Az — ¢

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 58

i.e., for some 1,
Vil <i.lagy —cp| = |lag® — cp| Aaiy — ci| < |aix — ¢l

Since a;x # c;, the i-th row must be hierarchically dependent. Selecting
1,%2,... ,4; < % such that the ix-th row is hierarchically independent, we
can certainly satisfy

a; = 04,5 + Oy + -+ + Oy, Q4.
As a; x = ¢, by (5.4),
laiy — ci,| = |ag @ —ci,| =0
which follows a;, y = ¢;,. Hence

ay = (o4,ai +- -+ o404y
= ;¢ + -t oyc
= (o404 +- -+ az0;)T
= a;T
which is contradiction to |a;y — ¢;| < |a;® — ¢;|. Therefore @ is a solution.
Next, we prove that (5.4) holds if @ is a solution. Let @ be a solution.

Assume, for contradiction, & does not satisfy (5.4). Let ¢* be the minimum
index such that

A= F Cix

although the ¢*-th row is hierarchically independent. Choose all

1,%2,... ,4; < ¢* such that the ¢x-th row is hierarchically independent, which
follows a;,« = c;,. Then there exists at least one y such that a;,y = ¢;,,
...y @Y = Cjy, A+ Y = ci+ because a;,, * -+, @;;, a;+ are linearly independent.

Now, for all 7 < ¢*, we can consider either of the following two cases:

1. If the ¢-th row is hierarchically independent,

|az~'y — Cz’l = |az~a: - Cz" =0.
2. Otherwise, for some iy < i, we can satisfy

i = Qi Gy + 00+ Qg Gy

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 59

Hence,
a;y = (a’ila”il teetag, ail')y
= Ci1+...+cil,
= (apai +- +tag,a,)T
= a;x
which implies
laiy —ci| = |a;ix — ¢l

Also, as a;*y = ¢+,
lapxy — ci+| < |apx — cix|.

Thus |Ay — ¢| <jex |Ax — ¢|, which is contradiction to that @ is a solution.
Therefore (5.4) holds. O

Intuitively, solutions satisfy each hierarchically independent row, whose co-
efficient vector is linearly independent of those of all the upper or stronger
ones. Conversely, if an equation has a dependent coefficient vector, it ex-
hibits either inconsistency that we must discard, or redundancy that we may
ignore.3

Unlike Definition 5.2, Theorem 5.5 provides a direct way to obtain so-
lutions; that is, it describes which rows to actually solve. For example,
consider an HLS with z +y+2 =3, 2 =0,z +y+2 =4, y+ 2z = 3, and
y = 1 in this order, whose extended coefficient matrix is

(5.5)

SO R R
_ o= O
O == O =
—= Wk O w

By Theorem 5.5, any solution must satisfy the first equation x + y + z =
3 since its coefficient vector (1 1 1) is hierarchically independent.* Also,

3By Theorem 5.5, we do not need to minimize errors of hierarchically dependent equa-
tions; we only need to satisfy all hierarchically independent equations.

“Definition 5.2 suggests that the first row of a coefficient matrix is hierarchically inde-
pendent if its coefficient vector is not (0 0 --- 0). Otherwise, the first equation is either
always satisfiable, e.g., 0z + Oy = 0, or never satisfiable, e.g., 0z + 0y = 1. Therefore, we
do not need to consider the case.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 60

the second equation z = 0 must be satisfied since (1 0 0) is independent.
However, we do not satisfy the third one = + y + z = 4 because (1 1 1)
(=(111)40-(100)) is dependent. In this case, it is inconsistent with the
first one. Also, the fourth y + z = 3 is dependent (as (01 1) =(111)—
1-(100)+0-(111)). In this case, the equation is redundant because it
can be composed of the first and second ones. Finally, the fifth equation
is independent and therefore satisfied. We thus obtain the unique solution
z =0,y =1, and z = 2, that is, the solution set is {(0 1 2)T}.

Next, we present a simple but useful lemma that we call elevation, which
allows us to transform an extended coefficient matrix by ‘elevating’ a hier-
archically independent row to an upper position:

Lemma 5.6 (elevation). Let (A ¢) be an arbitrary HLS, i an arbitrary
index such that — hdep(A,i), and i’ an arbitrary index such that i’ < i. Let
(B d) be an m x n matriz such that the first to (i’ — 1)-th rows of (B d) are
the first to (i' — 1)-th rows of (A ¢), the i'-th row of (B d) is the i-th row
of (A ¢), the (7' + 1) to i-th rows of (B d) are the i'-th to (i — 1)-th rows of
(A ¢), and the (i+ 1) to m-th rows of (B d) are the (i + 1)-th to m-th rows
of (A e), ie.,

by 1 dy ag_1 Ci_1
by dy a; Ci
b1 diygr ag cp
(B d) = . . =
b; d; a1 Ci1
biy1 diy1 ait1 Cit1

Then the solution set of (B d) is equal to that of (A ¢).

Proof. Let S and T be the solution sets of (A ¢) and (B d) respectively.
First, we show S C T. Let # € S. To prove that — hdep(B,i") implies
b;nx = d;, we consider the following four cases:

1. Case i" < ¢'. Assume - hdep(B,i"). Clearly, — hdep(A,i"). Since
a’i”m = Ci"7 biu$ = dill.

2. Casei" =1i'. Since — hdep(A,1), a;x = ¢;. Therefore byx = d;.

3. Case i' < i" < i. We prove the contrapositive: Assume bz #
dyn. Then a_1@ # ciyr_1. As hdep(A,i" — 1), there exist some

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 61

Qag, ... ,o4n_o such that
Q1 = 01a] + Q2@ 9.
Hence
by = aibi+---+ay_1by_1 +0-by
+apby 1+ o _abin .
Thus hdep(B,i").

4. Case i" > i. We prove the contrapositive: Assume by & # d;». Then
a;nx # cir. As hdep(A,i"), there exist some a,...,a;_1 such that

a;y =o1a1 + -+ o 10 1.
Hence

bi» = aibi+ -+ ap 1by 1+ a;by
+oapbygr + -+ 1b;
+ @ip1big1 + -+ apr_1bpr .
Accordingly hdep(B,i").

In all the cases, — hdep(B, ") implies b;x = d;». Therefore & € T.
Next, we give S D T. Let # € T. To prove that — hdep(A,i") implies
a;nx = ¢y, we suppose the following four cases:

1. Case i" < ¢'. Assume - hdep(A,i"). Clearly, = hdep(B,i"). Since
billm = di”7 aiu$ = Cill.

2. Case i’ < i" < i. We prove the contrapositive: Assume a; & # c;n.
Then by 1@ # dy 1. As hdep(B,i" + 1), there exist some (1, ... , B
such that

bini1 = by + -+ + Binbin.
Hence

ap = prar+---+ fro1apq
+ Biv1ap + oo+ Bimap 1 + Bya;.

Since — hdep(A,i), By = 0 is required. Thus hdep(4,1i").

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 62
3. Case 7" = i. Since — hdep(A,i), — hdep(B,i'). Hence byx = d;.
Therefore a;x = c;.

4. Case i" > i. We prove the contrapositive: Assume a; @ # c;». Then
bynx # dy. As hdep(B,i"), there exist some f1,... ,B;_1 such that

bir = p1byr + -+ + Bir_1bir 1.
Hence

airw = prar+---+ By_1ai 1
+ Birt1ai + -+ - + Biai—1 + Bra;
+ Bit1@it1 + -+ B qap .

Accordingly hdep(A4,i").
In all the cases, — hdep(A4,i") implies a;nx = ¢;». Therefore x € S. a

By this lemma, we can move any hierarchically independent row to an arbi-
trary upper position. For example, consider the extended coefficient matrix
(5.5) again. Since the fifth row is hierarchically independent, we can elevate
it and obtain any of the following matrices:

01 0|1 11 13 11 13 11 1|3
11 1|3 01 0|1 100/0 100/0
toolof,l]1o0o0lo],lo1ol1]|,]1114
11 1[4 11 1[4 11 1/4 01 0|1
01 1|3 01 1/3 01 13 01 13

All of these matrices generate the same solution set {(0 1 2)T} as that of
(5.5).

The row elevation operation is quite applicable to existing algorithms
for solving non-hierarchical linear systems, especially ones categorized into
direct methods. In the next section, using elevation, we will modify two
famous direct methods called Gaussian elimination and Crout’s method so
that they can solve HLSs. We use the elevation lemma to prove the correct-
ness of the resulting algorithms.

Finally, we present a convenient notion called regularization:

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 63

Definition 5.7 (regularization). A regularization of (A ¢) is the follow-
ing form of a matrix:

a1 a2 -t Qip c1
aGml Aam2 -°** OGmn Cm
1 0 -+ 0 |cme
0 1 0 Cm+2
0 0 1 | eman
where ¢y 41, Cm+2,- - - ,Cm4n are arbitrary scalars.

Proposition 5.8. The solution of a regularization of (A ¢) is a solution of

(A ¢), and is unique.
Proof. Trivial by Proposition 5.3. O

The (m + j)-th row of a regularization expresses z; = cj1j. Intuitively, it
works as a default constraint that assigns c¢m4; to zj. Since all the vari-
ables have default values, the solution will be uniquely determined. With
this property, we can simplify algorithms for solving HLSs. In the follow-
ing section on algorithms, we assume that we are given only ‘regularized’
matrices.

5.4 Basic Algorithms

In this section, we describe algorithms for solving HLSs.

5.4.1 Design Strategy

In Lemma 5.6, we presented an operation for HLSs called elevation, which
preserves the solution sets of them. With this elevation operation, we design
algorithms for HLSs. To apply an elevation to an HLS, it is required that
the row to elevate is hierarchically independent. Therefore, it is the key in
our algorithm design to find hierarchically independent rows efficiently. We
found that it is possible to efficiently realize elevation in certain algorithms
belonging to direct methods, which solve non-hierarchical linear systems with
finitely many arithmetic operations.

We actually provide three algorithms for solving HLSs. First, to illus-
trate how to use elevation, we show that a local propagation algorithm Blue

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 64

[68], one of the earliest algorithms for constraint hierarchies, can be rewrit-
ten in terms of HLSs using elevation. Next, we present a new algorithm
based on a direct method called Gaussian elimination. Finally, we propose
another algorithm that obtains LU decomposition with a direct method.

5.4.2 Local Propagation

Blue is one of the earliest algorithms for solving constraint hierarchies. It
handles multi-way constraints, each of which consists of a set of methods,
or functions from input variables to output variables. For example, a multi-
way constraint expressing £ + y = z has methods « + z —y, y < 2z — z,
and z < = + y. To solve hierarchies of multi-way constraints, Blue chooses
appropriate methods so that they will form a directed acyclic graph as a
whole, leaving methods of weak unsatisfiable constraints unselected. For
instance, a hierarchy with required ¢ + y = z, strong © = 1, medium y = 2,
and weak z = 4 has the set of selected methods z < z+y, x <+ 1, and y + 2,
where no method is chosen for the unsatisfiable constraint weak z = 4. After
finding a method graph, Blue applies topological sort to it and executes each
method in the obtained order. However, all constraint hierarchies do not
have acyclic method graphs that generate correct solutions. For hierarchies
with no correct acyclic method graphs, Blue finds incorrect graphs instead,
that is, it is an unsound algorithm.

Originally, Blue was invented as a graph algorithm, but its background
idea is not restricted to graph concepts. Therefore, we first present Blue as
a simple algorithm for HLSs by modifying the one in [58].

Blue is a local propagation algorithm that can be further categorized into
propagation of known states (PKS) [3]. Basically, PKS repeatedly selects a
constraint with a method whose inputs are known. To incorporate PKS into
our matrix formulation of HLSs, we view the process as transformation of
coefficient matrices into lower triangular ones.> Formally, to solve an HLS

®The other category is propagation of degrees of freedom (PDF) [3], which, at each step,
chooses a constraint with a method whose output variable can be arbitrarily determined.
With PDF, coefficient matrices would result in upper triangular ones.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 65

Az = ¢, where A is a regularization, we transform (A4 ¢) into

b1y 0 <o 0 dy
ba1 ba2 0 ds
(B d) = bnl bn2 e bnn dn)
bnt1,1 bnyi2 ot bpyim | duga
bm,1 bm,2 bmn dm

where b;; # 0 for 1 < j < n, by applying a sequence of row elevation op-
erations and column swap operations. Note that, when we apply a column
swap operation, we must also swap the corresponding variables, and there-
fore, we finally obtain a permutation y of . In (B d), the first to n-th
rows are hierarchically independent, which is always possible because A is a
regularization. Accordingly, we can obtain the solution of By = d by com-
puting y; < 1/b;;(d; — Z;,_:ll bjjry;r) for j =1,2,... ,n in this order, which
is known as forward substitution. We can regard such a transformation as
PKS, where each assignment to y; works as a selected method.

Now we present the Blue algorithm modified for HLSs:
1 blue((4 ¢))

2 {

3 m<« # of rows of A; n <+ # of columns of A;

4 for j+< 1 ton do {

5 for i< j to m do { // find a hierarchically independent row.
6 Jo < 0;

7 for j'< j to n do

8 if aiy #0 then { j, < j'; break; }

9 for j'<j'+1 to n do

10 if a; #0 then { j, < 0; break; }

11 if j, # 0 then break;

12 }

13 if i #j then elev_row((4 ¢), i, j); // elevate the row.
14 if j, #j then swap_cols(A4, jo, j); // also variables.
15}

16 }

The algorithm blue takes (A ¢) as input, and then rewrite it into a lower
triangular matrix. elev_row((A ¢),i,j) applies a row elevation operation to

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 66

(A ¢) by elevating the i-th row to the j-th, and swap_cols(A4, j,,J) performs
a column swap operation by exchanging the j,-th and j-th columns of A.

Intuitively, blue iterates the for j loop from line 3 to select a uniquely
satisfiable equation. Before the j-th step, (A ¢) has been rewritten into the
following form:

b1y 0 0 --- 0 dy
bj—11 - bj—1j-1| 0 --- 0 |dj_1
1 1 1 ! !
aj1 @jj-1 | jj @jn | €5
! ! ! ! !
Am1 e a’m,jfl amj Tt Opp Cm

By this step, the rows over the j-th have been processed, and partially
form a lower triangular matrix. Then, at lines 5-12, the algorithm
searches for the uppermost unprocessed row with exactly one nonzero at
the j-th to n-th columns, that is, if it is the i-th row, it has the form
(ail a2 - Q551 0---0 Aij, 0--- 0), where Aij, 75 0. At lines 13 and 14,
it moves a;;, to the (j,j) position by elevating the i-th row to the j-th and
swapping the j,-th and j-th columns.

To illustrate the correctness of the algorithm, we show that it chooses
only hierarchically independent rows to elevate. Since Blue is inher-
ently unsound, we make the following premise for the correctness: we
do not need to simultaneously satisfy two or more equations to obtain
variable values. Let the i-th row be selected for elevation, and a; =

(@1 -+ @ij—1 0 --- 0 az, 0 --- 0). Assume, for contradiction, that it
is hierarchically dependent. Then there exist some «;,,...,q; such that
a; = a;,a; + -+ + oy a4, where iq,... ,4 < 4 and a;,...,a; are inde-

pendent. It follows (s, aij, + -+ + @045,)T, = ¢y + -+ + 4,64, and
therefore z;, is uniquely determined. However, since the rows over the j-
th have only zeros at the j-th to n-th columns, we must have at least two
it’s such that 7; > j. Thus, we must simultaneously satisfy at least two
equations to obtain the value of z; , which is contradiction to our premise.
Therefore, the i-th row is hierarchically independent, and the row elevation
operation is valid.

The time complexity of the Blue algorithm for HLSs is O(mn?). It is
slower than the original Blue algorithm because of the dense matrix notation
of HLSs instead of graphs.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 67

5.4.3 Elimination

Next, we present a new algorithm for solving HLSs that is sound unlike
Blue. We based this algorithm on Gaussian elimination, which is one of the
most familiar direct-method algorithms for solving non-hierarchical linear
systems. Similar to Gaussian elimination, our algorithm transforms coeffi-
cient matrices into upper triangular ones. Formally, given (A ¢), where A
is a regularization, it outputs

bir bz -+ bin | di
0 by -+ bap| do
0 0 0 | dpit
0 0 0 dm

where bj; # 0 for 1 < j < n. Since the first to n-th rows of (B d) are hierar-
chically independent, we can obtain the solution of Bx = d by calculating
zj = 1/bjj(dj — 3% _;, 1 bjjrxy) for j =n,n —1,...,1 in this order, which
is known as backward substitution.

Below is our elimination algorithm for HLSs:

1 elim((4 ¢))

2 {

3 m<« # of rows of A; n <+ # of columns of A;

4 for j< 1 ton do {

5 for i< j to m do // find a hierarchically independent row.
6 if a;; # 0 then break;

7 if i # j then elev_row((4 ¢), i, j); // elevate the row.
8 for i< j+1 to m do {

9 r < aij/ajj;

10 for j'+ j to n do Qgj1 $— Qjjr — T % Qg1 5

11 Ci ¢ —T*xCj;

12 T

13 }

14 }

Before the j-th step of the for j loop from 3, (A ¢) has been transformed

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 68

into the following form:

b1 -+ b1 bi; - b dy
0 bj—1,-1 | bj-1,5 -+ bj—1,n | dj-1
! ! /
0 0 aj; U, cj
! ! /
O Y 0 amj Y a,mn cm

Intuitively, at lines 4-6, the algorithm looks for the uppermost unprocessed
row with a nonzero at the j-th column. Next, at line 7, it elevates the
selected i-th row to the j-th. Finally, at lines 8 to 12, it ‘eliminates’ all the
lower entries at the j-th column with the new j-th row in the same way as
Gaussian elimination.

Now we show that this algorithm chooses only hierarchically independent
rows to elevate. Let the i-th row be selected. Assume, for contradiction,
that the i-th row is dependent. Then there exist some a1,...,a;_ 1 such
that a; = aja; + --- + aj_1a;_1. Since a;; # 0 and ayq = 0 for &' > 1,
ay = 0 is required. Inductively, a; = 0 is also required for 7' < j. Hence
a; = aja; + --- + a;_1a;_1, which is contradiction because a;; = 0 for
j <" <ibut a;; # 0. Accordingly, the i-th row is independent.

We can accommodate this algorithm to ‘unregularized’ coefficient ma-
trices. If we give an unregularized matrix to it, it would possibly encounter
the situation that a;; = 0 for all + > j at lines 5 and 6. To cope with
such a situation, it would need to exchange the j-th column with another
remaining column that have at least one nonzero. With such modification,
the algorithm would finally obtain a set of equations that represents a set
of all solutions.

The time complexity of our elimination algorithm is O(mn?), which is
the same as that of the Blue algorithm for HLSs. It means that our elimina-
tion algorithm obtains soundness and completeness without increasing time
complexity.

5.4.4 LU Decomposition

We present another sound algorithm based on Crout’s method, a direct-
method algorithm for applying LU decomposition to square matrices. It
transforms a coefficient matrix into a product of lower and upper triangu-
lar ones. Formally, from a regularization A, it obtains the product of two

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 69

matrices L and U as follows:

1 o --- 0 U1l U2 . Ulp
loy 1 0 0 wup -+ uop

LU =) .) .) ,
lnl ln2 1 0 0 Unn

where u;; # 0 for 1 < j < n. The advantage of this algorithm over the
previous elimination method is that we can compute solutions of Ax = ¢ for
different ¢ without recomputing L and U. Concretely, once we created L and
U from A, we can solve Ax = c as follows: first, obtain d by selecting entries
from ¢ in the way determined at LU decomposition; next, solve Ly = d for
y with forward substitution; finally, solve Uz = y for x with backward
substitution. This property is useful for GUIs because it allows us to realize
two-phase constraint satisfaction similar to local propagation.
Now we present the algorithm below:

1 1lu_dec(A4)

2 {

3 m<« # of rowus of A; n <+ # of columns of A;

4 for j< 1 ton do {

5 for i1+1 to j—1 do

6 for k< 1 toi—1 do Q5 < Q35 — Qjg * Ay ;

7 for 1< j to m do

8 for k<1 to 7—1 do Qjj < Q5 — Qig * Q5 ;

9 for i < j to m do // find a hierarchically independent row.

10 if a;; # 0 then break;

11 if i # j then elev_row(A4, i, j); // elevate the row.
12 for 1< j+1 to m do aij<—aij/ajj;

13 }

14 }

It overwrites entries of L and U on A. Before the j-th step of the for j loop
from line 4, A has been transformed into

! !
w1l U2ttt UL ay; ottt @y,

! !
lor uge -0 wg1 | oay; o ag,

. . . . I . e e I
li—in L1 Uj—1,j—-1 | @14 Ai_1n
I I ! !

i b 1 | aj Tjn
li li ! 1 1
ml m2 U m,j—1 Apj T Amn

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 70

We informally show why the i-th row selected at lines 9 and 10 is hier-
archically independent. At this time, for 1 < ¢’ < j, all

b = lmuﬁj) +-- li',iulugfll +ulf)

3 i

() _

are linearly independent, where [, = ayp and uy’ = (0 --- O upg -+ -upj) =
(0 --- O agg ---axj) (each as represents the current value of the (s, 1) entry).
It indicates that ug,]) can be uniquely expressed with bgj), N ,bg,]) as follows:
(5.6) uld) = B b + -+ + Bib).

For j <i' <, the following equation holds since a;; = 0:

b = Lyl + 1yl 4 15w

By (5.6), it follows that bz(,j) is dependent on bgj), e ,bg-j_)l. By contrast, we
have

5.7 b =taul? +lpul 4 e (0 - 0ay),

where a;; = 0. However, ignoring the j-th column, we also have

j—1 j—1 i—1 j—1
bz(]) = lilugj) + ln’ugj) + -+ li’j_lugil)
Since ugjfl), e ,ug.j:ll) are linearly independent, l;,...,l;;_1 must be
unique. Therefore, we have only one combination of /;1,... ,l; j_1 to equate

the first to (j — 1)-th entries in (5.7), but in this case we cannot equate
the j-th entries without a;;. It follows that bZ(]) is linearly independent of
bgj), e ,b;g)1. Therefore, b9 is hierarchically independent.

(2

As is with the previous elimination algorithm, we can also adapt this
algorithm to unregularized coefficient matrices. If we supply an unregular-
ized matrix to it, it would possibly find that a;; = 0 for all 7 > j at lines 9
and 10. Therefore, it is necessary to swap the column with another remain-
ing column with one or more non-zeros. Finally, it would acquire a set of
equations indicating the solution set.

The time complexity of our LU decomposition algorithm is O(mn?),
which is equal to that of the previous elimination algorithm. However, as
we noted, the LU decomposition algorithm has an extra advantage that it

efficiently recomputes solutions of Az = ¢ for different c.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 71

5.5 Discussion

This section provides minor discussions on HLSs.

5.5.1 Limitations Owing to Total Ordering of Preferential
Constraints

We sometimes encounter problems due to total ordering of preferential con-
straints. A typical example is that we have difficulty in dragging an object
constrained to be on a almost horizontal or vertical straight line. In this
case, we cannot simultaneously satisfy both of the two constraints that bind
the mouse cursor with the object (one for z-coordinates and the other for y-
coordinates). Since preferential constraints are totally ordered, the stronger
one of the binding constraints will be selected by the solver. Suppose that the
binding constraint for xz-coordinates is stronger, and also that the line is al-
most vertical. Then, if the user moves the mouse slightly in its z-coordinate,
the object will be largely moved in its y-coordinate. It is because the almost
vertical line determines the y-coordinate by largely magnifying the change
of the z-coordinate.®

We can alleviate this problem to a certain degree by introducing a hybrid
comparator, which we discuss in the next subsection.

5.5.2 Hybrid Comparators

Our theory and algorithms are restricted to locally-better. However, in some
situation, we can accommodate our algorithms to a hybrid comparator, for
example, that uses locally-predicate-better (LPB) for some levels and also
least-squares-better (LSB) for the other levels.

Consider that we solve a constraint hierarchy consisting of linear equa-
tions with a hybrid comparator that adopts LPB for levels 1 to n — 1 and
LSB for level n. By re-ordering constraints at levels 1 to n — 1 within each
level, we can obtain an HLS Az = ¢. When we solve it without regular-
ization, we acquire y = A’z + ¢', where y and z contain distinct variables
formerly in . Next, we integrate it with the linear system Bax = d for level
n by eliminating y with y = A’z + ¢/, and then get B’z = d'. Now, we
can obtain the solution of the original hierarchy by solving B’z = d’ with a
known algorithm for the least-squares method of linear systems.

5Note that this is not a unique problem that we encounter by using HLSs. In fact, HLSs
inherit this problem from constraint hierarchies solved with locally-better. Also, remind
that, in Chapter 4, we designed the DETAIL constraint solver to tackle this problem in
the framework of local propagation.

© 1997 Hiroshi HOSOBE

CHAPTER 5. HIERARCHICAL LINEAR SYSTEMS 72

5.5.3 Pivoting

As we showed, finding hierarchically independent rows can be efficiently real-
ized in certain direct-method algorithms. At the positions where we inserted
row elevation operations, the original algorithms may perform partial piv-
oting, which swaps a row with another lower row that causes computation
errors to increase in the least degree. Concretely, both Gaussian elimination
and Crout’s method seek the rows with the largest values, instead of the up-
permost rows with non-zeros as is with our algorithms. It suggests that, by
replacing partial pivoting with elevation, we may be able to accommodate
various direct methods to hierarchies.

It also indicates that we cannot use partial pivoting to prevent computa-
tion errors. A simple solution is to use complete pivoting, which exchanges
columns for this purpose. However, complete pivoting is usually more ex-
pensive than partial pivoting. We can regard it as the additional cost be-
cause of introducing hierarchies. Currently, we ourselves are not sensitive
to computation errors, because we mainly use constraints for graphical user
interfaces.

© 1997 Hiroshi HOSOBE

Chapter 6

The HiRise Constraint
Solver

This chapter describes the HiRise constraint solver, which provides incre-
mental planning and real-time execution for satisfying HLSs.

6.1 Overview

HiRise is an incremental algorithm for solving HLSs consisting of required
and preferential linear equality constraints. To allow incremental addition
and removal of constraints, it ‘factorizes’ coefficient matrices into products
of certain matrices that enable us to easily replace rows of original matrices.

We present the following two strategies for incremental satisfaction of
HLSs:

e The basic strategy is for required constraints. Since all required con-
straints must be satisfied by definition, they must also be satisfied after
a constraint is added or removed. Therefore, using the advantage of
the matrix maintenance mechanism of HiRise, it can easily update
data structures for required constraints. After that, it re-solves pref-
erential constraints non-incrementally. This strategy is expected to
be efficient for HLSs with much fewer preferential constraints than
required ones.

e The enhanced strategy is for preferential constraints. Preferential con-
straints are more difficult to incrementally handle than required ones,
because a satisfied preferential constraint may become unsatisfied due

73

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 74

to addition of another stronger constraint. Therefore, the key to incre-
mental treatment of preferential constraints is to quickly find a con-
straint that should be influenced by addition of a constraint. HiRise
realizes this by introducing walkabout strengths in a similar way to
DETAIL.

6.2 Algorithm

This section describes the constraint satisfaction algorithm used in the
HiRise constraint solver.

6.2.1 Non-Incremental Satisfaction of HLSs

This subsection presents the algorithm that satisfies HLSs non-
incrementally. A typical situation that HiRise uses this algorithm is that it
solves an initial HLS just after an application is started.

In the following description, we first treat HLSs consisting only of pref-
erential constraints for simplicity. We will mention how to handle required
constraints later in this subsection.

Triangular Factorization

In the planning phase, the non-incremental algorithm chooses hierarchically

independent rows from the coefficient matrix of a given HLS, and then ap-

plies triangular factorization to the selected rows. To illustrate triangular

factorization, assume that hierarchically independent rows by, bs, ..., b,
1

are already collected and form an n X n matrix B = : |. Then we can

express the triangular factorization of B as follows:

(6.1) BP,U,PyUs--- P,U, = L

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER

where each P; is an n X n permutation matrix such that

1

each U; is an n X n upper triangular eta matrix!

1

(6.2) U; =

such that

and L is an n X n lower triangular matrix such that

1

la1

In—11
lnl

Intuitively, the sequence P;, Ui, P», Us, ..
a lower triangular matrix L. Before multiplied by the i-th pair of matrices

Normally, except diagonal entries, an eta matrix has non-zero entries at a column. By
contrast, U; contains non-zero entries at the i-th row. However, for brevity, we also refer

U; as an eta matrix.

© 1997 Hiroshi HOSOBE

ln,nfl 1

< i-th

+— j-th

< 7-th

.y Py, U, transforms B into

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 76

P; and U;, B has been transformed as follows:

BP Uy ---P; 1U; 4

1
/
21 1
— / /
i—1,1 b171,2 1—1,0—2 1
/ / / / / / /
bz'l biZ Tt bi,i72 bz’,iq bii bz’,i+1 e bm
/ / / / / / /
bi-|—1,1 bi-|—1,2 e bi+1,i—2 bi—l—l,i—l bi—l—l,i bi—l—l,i—l—l t i+1,n
/ / / / / / /
nl bn2 T n,i—2 n,i—1 bnz n,i+1 T bnn

P; swaps the i-th column for the j-th so that the resulting (7,%)-entry is not
0. Then U; changes the (i,7)-entry into 1, and ‘eliminates’ all (, j)-entries
for 7 > i. At the same time, U; modifies lower entries at the i-th to n-th
columns.

Our triangular factorization may be easily understood when compared
with Gaussian elimination: it transforms a square matrix B into a lower tri-
angular matrix L, whereas Gaussian elimination transforms a square matrix
into an upper triangular matrix. Also, it is different from Gaussian elimina-
tion in that it records its transformation process as a sequence of P;’s and
U;’s, which we call transformation matrices.

The Planning Phase

Below, we present the pseudo-code of the non-incremental algorithm for
obtaining the triangular factorization of a coefficient matrix A:

1 5+ 1;

2 for i+ 1 to m do {

3 (al ag -°* CLn) — a;PLUPUs - -- ijlUjfl H
4 if 3j' > j.aj #0 then {

5 bj —a;;

6 determine P; and Uj;

7 lj < (a1 ag -+ an)P;Uj;

8 Jj—J3+1;

° }

10 }

where b; and I; are the j-th rows of B and L respectively.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 7

Intuitively, in the for loop from line 2, it checks whether the i-th row a;
of A is hierarchically independent, and if the row is independent, it decides
the j-th pair of P; and Uj;. Specifically, at line 3, it transforms a; into
(a1 ay - -+ ap) by applying already determined Py’s and Uy’s. Then, at line 4,
it examines whether the row is hierarchically independent: if all a; for j' > j
are zero, a; is dependent on rows already judged hierarchically independent;
otherwise, a; is hierarchically independent. If a; is independent, it assigns
a; to b; at line 5, and it determines P; and U; at line 6, based on triangular
factorization explained earlier. At line 7, it computes the j-th row I; of the
lower triangular matrix L, and then finishes this step with increasing j at
line 8.

The Execution Phase

The execution phase solves Bax = ¢ for @, which is as simple as substitution
operations for ordinary LU decomposition.
By introducing an n-vector y, let

(6.3) xz=PUPU;- - -PU,y.
Then Ly = ¢ holds since

Ly = BPU;:-- PnUny
= BPU;-- P,U,(PU; ---P,U,) 'z
= Bz

= C.

The execution phase first solves Ly = ¢ for y with forward substitution.
Then it computes & with (6.3), which is easy because of the simple structures
of P;’s and Uj’s.

Treating Required Constraints

Required constraints differ from preferential constraints in that they must be
always satisfied by definition. We can realize required constraints by slightly
modifying the algorithm described above. Basically, we handle required con-
straints by locating them on top of preferential ones in coefficient matrices.
Furthermore, to guarantee all of them to hold, the run-time solver records
required constraints proved to be hierarchically dependent in the planning
phase, and checks whether all the recorded ones are satisfied every time after
the execution phase. If the solver detects an unsatisfied constraint, it will
report an error to its application.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 78

6.2.2 Modifying Triangular Factorizations

Before describing incremental satisfaction of HLSs, we present its basic tech-
nique.

Technique

By modifying the triangular factorization of an n x n matrix B, it obtains a
factorization of a matrix B’ revised by eliminating a row from B and then
adding a new row to the bottom instead, i.e.

b11 bia -+ bin
bi—11 bi_12 -+ bi—ip
!
B = | biy11 biyi2 -+ bitim
bnl bn2 e bnn
/ / /
bz'l bz'2 bm

Using the triangular factorization (6.1) of B, it obtains the following form
of a factorization:

B'PiUPUs - - - P,UQUU; 4 - Uy = L

where all Py, and Uy, are the same as those of (6.1), @ is an n X n permutation
matrix such that

Q= 0 1 + i-th

and each U; is an n X n upper triangular eta matrix of the form (6.2).
First, in this factorization, multiplying B’ by P,U, P,Us - - - P,U,, obtains

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 79

the following:

B'PULPU, - -+ P,U,

1
lic1p 1
= Livig -+ liy1i1 Ly 1
lnl e l'n,ifl lnz ln,i+1 1
1" . 1" B! 1" b
il iie1 i Viit1 in

Note that the first to (¢ — 1)-th rows are the same as those of the lower
triangular matrix L from the factorization of B respectively, and that the
i-th to (n — 1)-th rows are the same as the (i 4+ 1)-th to n-th rows of L
respectively. Next, multiplying B’ P,U, P,Us - - - P,U,, by Q results in

B'PiULPyUs - - - PyUnQ

1
li 11 1
= Livig -+ lig1i-1 1 liy1
bt o licr lnggn L Iy
1" . 1" 1" B! b
il i1 Y5441 in Vs

Now, we can easily acquire a lower triangular matrix L' by eliminating each
(k,n)-entry for i < k < n with U}, and also changing the (n,n)-entry into 1
with Uj,.

Clearly, we can repeatedly perform this technique, because we can fur-
ther apply it to a factorization that it previously obtained. When it is
repeated, the sequence of upper triangular eta matrices such as U}, are ex-
tended. However, for brevity, we also refer such a resulting factorization as
a triangular factorization.

This technique is closely related to Forrest and Tomlin’s method known
in linear programming [16], which was developed for substituting columns
of matrices. Forrest and Tomlin’s method handles triangular factorization
of the form

L,P,L, 1P, ---LiPPB=U

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 80

which can be regarded as a variation of Gaussian elimination that records
its transformation process. Forrest and Tomlin’s method modifies the tri-
angular factorization by multiplying it by L] L! -+ L@ from the left.

nn—1"

Re-Factorization

The technique for modifying triangular factorizations suggests that a con-
straint solver using this technique will become slower as it is repeated, be-
cause the sequence of transformation matrices gets longer. In fact, both of
the planning and execution phases in the incremental algorithm take longer
times as the sequence extends. To prevent the constraint solver from getting
slow, it is useful to shorten the sequence by performing the non-incremental
algorithm occasionally. We refer such an interleaved non-incremental fac-
torization as re-factorization.?

6.2.3 Incremental Maintenance of Required Constraints

This subsection describes the basic strategy for incremental constraint sat-
isfaction. As described, we incrementally maintain only required constraints
with this strategy.

Adding a Required Constraint

First, we provide how to add a required constraint a?no T = c?no 41 toan
HLS ((A4p o), (A ¢)) that is already factorized.

For simplicity, we assume that all existing required constraints are in-
dependent. Then we do not need to change P;, U;, and l; for ¢ < my;
since required constraints must be satisfied by definition, we can skip the
factorization for them. Therefore, for required constraints, we only need to
factorize al, ;. If @), ., is hierarchically dependent, we also do not have to
change the remaining P;’s, U;’s, and [;’s (in this case, the satisfiability of the
added constraint must be examined for each substitution). If a?no 41 is hier-
archically independent, we factorize agm 41 and also the rows of preferential
constraints in the same way as non-incremental satisfaction of HLSs.

2The appropriate frequency for re-factorization depends on actual applications. In
linear programming, some report says that a good ratio is one re-factorization to twenty
incremental factorizations [16].

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 81

Removing a Required Constraint

Next, we present the way to remove an existing required constraint a?a: = c?
from an HLS ((4g ¢g), (A ¢)) that is already factorized.
We assume that all existing required constraints are independent. Then

a? is used for factorization of the HLS. Using the technique for modify-

(2
ing triangular factorizations, we can incrementally factorize the remaining
required constraints after deleting a. Then we can factorize the rows of
preferential constraints in a similar way to non-incremental satisfaction.

Adding or Removing a Preferential Constraint

The basic strategy does not support incremental maintenance of preferential
constraints. Therefore, to add or remove a preferential constraint, we need
to factorize the rows of all preferential constraints.

6.2.4 Incremental Maintenance of Preferential Constraints

This subsection gives the enhanced strategy, which incrementally maintains
preferential constraints.

We assume that before the algorithm begins, there exists an HLS that
are already solved with triangular factorization. Then, by modifying its
factorization, the algorithm solves another HLS that can be obtained by
inserting a constraint to the existing HLS or removing one from the HLS.

In the same way as the non-incremental algorithm, for simplicity, this
subsection considers HLSs that contain only preferential constraints.

Adding a Constraint to an HLS

Now, we explain how to add a new constraint to an HLS whose triangular
factorization is already obtained. By “adding a constraint to an HLS,” we
mean that we obtain another HLS by inserting the constraint between the
(¢ — 1)-th and i-th constraints of the original HLS for some 1.

When we add a constraint to an HLS, we encounter either of the following
two cases:

e The new constraint should be enforced; that is, we use its coefficient
vector to obtain a new triangular factorization. To realize it, we re-
voke an appropriate enforced weaker constraint by removing the corre-
sponding row from the matrix B, and add the coefficient vector of the
new constraint to the bottom instead. Then we incrementally compute
the new factorization.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 82

e The new constraint should not be enforced. In this case, we do not
need to modify the current triangular factorization.

Note that, because of the first case, the order of rows in B may become
different from that of the corresponding constraints in the original HLS,
whereas the non-incremental algorithm and the incremental algorithm using
the basic strategy preserve the order of constraints. In spite of such change
of the order, we can obtain correct solutions if all the selected constraints
are originally hierarchically independent.

Now, we outline the algorithm for obtaining the triangular factorization
of the new HLS:

1. Predict a constraint that will need to be revoked by adding the new
constraint. If there is not such a constraint, the algorithm terminates
without modifying the triangular factorization. Otherwise, let k& be
the row index of the predicted constraint in B.

2. Compute (a1 as - - an) by multiplying the coefficient vector of the new
constraint by the sequence of transformation matrices P,U; PoUs - - -.

a ay is not zero, incrementally obtain the triangular factoriza-

If af i t i tally obtain the triangular factori
tion of the matrix acquired by deleting the k-th row from B and
adding the coefficient vector of the new constraint to the bottom.

(b) Otherwise, switch to the basic strategy for incremental factoriza-
tion.3

The key of this algorithm is the prediction of a constraint to revoke. For
this purpose, we use walkabout strengths again in a similar way to classical
local propagation algorithms such as DeltaBlue. In the HiRise algorithm, we
assign a walkabout strength w; to each variable z;, and compute walkabout
strengths as follows:

1 for i< 1 to n do {
2 w; <— index of the constraint corresponding to [;;
3 for j< 1 to i —1 do if [;; # 0 then w; + min(w;, wj);

4)

3Precisely, the process to follow is not exactly the same as the basic strategy, which
was described in the previous subsection. If the basic strategy is used alone, all required
constraints appear over preferential ones in B. However, when the enhanced strategy is
adopted, one or more required constraints may mingle with preferential ones, because they
have been added incrementally. In this case, the algorithm cannot incrementally maintain
such required constraints, as opposed to the original basic strategy.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 83

5 for k< # of transformation matrices to 1 step —1 do {
6 let T be the k-th transformation matrix;
7 if Ty is of form P then {
8 let j and j' be the indices of the columns
to be swapped by Tj;
9 W < Wy wj<—wjz; ’LUjI(-’LU;
10 }
11 else if T} is of form (@ then {
12 let j be the index of the column
to be moved to the rightmost by T%;
13 W — Wp;
14 for j'<mn to j+1 step —1 do wj + wjr_1;
15 wj < w;
16
17 else { // Ty is of form U
18 let ¢ be the index of the row to be modified by T};
19 for j¢i+1 to n do if tf; #0 then w; ¢ min(w;,w;);
20 }
21}

where /;; is the j-th entry of ;, and tfj is the (i, j)-entry of T.

Intuitively, the walkabout strength of a variable indicates the index of
the weakest constraint used to compute the value of the variable. In the
for loop from line 1, the algorithm determines w; so that w; indicates the
index of the weakest constraint used to compute the value of y; with Ly = ¢
(Note that each pair of I; and ¢; corresponds to a constraint in the original
HLS). Then, in the loop from line 5, it alters w; based on the forms P, @,
and U of transformation matrices.

As noted, the algorithm for adding a constraint to an HLS predicts a
constraint to revoke using walkabout strengths. To illustrate the prediction
technique, assume that the constraint is inserted between the (i — 1)-th
and i-th constraints of the original HLS, and that by omitting non-zero
coefficients, it is represented as

ajy Tjy + 5y Tjy + -0 + a5 T5 = ¢
where aj, # 0 for each I, and also let
k = min(wj,, wj,, ... ,wj,)-

Then the prediction is either of the following:

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 84

1. If k£ is smaller than ¢, there is no constraint to revoke.

2. Otherwise, the k-th constraint of the original HLS is the candidate to
revoke.

Clearly, the predicted constraint is the weakest constraint used to calcu-
late the value of variables constrained by the added one. We can summarize
the points of this prediction technique as follows:

e In case 1 of the prediction, it is always correct. In this case, the added
constraint should not be enforced, and therefore, the algorithm can im-
mediately terminate without any operations for modifying triangular
factorization.

e In case 2 of the prediction, the algorithm can usually confirm its cor-
rectness by applying transformation matrices to the coefficient vector
of the added constraint. It means that, in most cases, we only need to
incrementally modify the triangular factorization, which is much less
time-consuming than the basic strategy.

If the algorithm cannot ensure the correctness of the prediction (the
prediction may be a miss), it switches to the basic strategy to guarantee a
correct solution. Although the basic strategy is expensive, this case is rare
as far as we experienced.

Removing a Constraint from an HLS

When we remove a constraint from an HLS whose triangular factorization
is already computed, we have either of the following two cases:

e The constraint to remove is enforced. In this case, we delete the cor-
responding row from the matrix B, and add a coefficient vector of
another weaker unenforced constraint instead to the bottom. Then we
incrementally obtain the new triangular factorization.

e The constraint to remove is unenforced. Then we do not need to
modify the current factorization.

The algorithm for removing a constraint from an HLS can be outlined
as follows:

1. If the constraint to remove is unenforced, the algorithm terminates
without revising the triangular factorization. Otherwise, remove the

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 85

corresponding row from the matrix B, and partially obtain the trian-
gular factorization of the remaining rows incrementally.*

2. Select the strongest constraint among unenforced ones weaker than the
removed one. Then apply the transformation matrices to the coefhi-
cient vector of the selected constraint. If the n-th entry of the resulting
vector is not zero, enforce the constraint, determining the last trans-
formation matrix for changing the n-th entry into 1. Otherwise, repeat
this step by choosing the next strongest unenforced constraint.

At the step 2, if the n-th entry of the vector is not zero, the correspond-
ing previously unenforced constraint is linearly independent of constraints
used for the factorization. It means that the constraint is hierarchically
independent since we search for such a constraint in the strength order.

Remarks

We make minor remarks on improving the performance of the algorithm.

Re-factorization. Re-factorization is also useful for improving the hit
ratio of prediction of constraints to revoke in the incremental algorithm
for adding a constraint. Constraints previously deleted from the matrix B
may have left connections of variables that do not currently exist. Because
of such connections, walkabout strengths of variables sometimes indicate
indices of unrelated constraints that are weaker than the one to be really
revoked.® Re-factorization cleans up such wrong connections, and enhances
the possibility of correct prediction.

Filtering constraints to try to enforce. When the incremental algo-
rithm removes a constraint, it tries to enforce unenforced weaker constraints
one by one in the order from the strongest to the weakest. If there are many
such unsatisfied constraints, this repetitive process may degrade the perfor-
mance of constraint satisfaction.

* At this time, the matrix is (n —1) x n because the new row is not added yet. However,
we can apply the technique for modifying triangular factorizations to such a matrix. In
this case, we cannot determine the last transformation matrix of the form U, which is to
transform the row to be enforced.

®In this case, the algorithm applies the basic strategy for incremental factorization. Al-
though such wrong connections may degrade the performance, they never cause incorrect
solutions.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 86

We can reduce constraints to try using walkabout strengths. After delet-
ing the row corresponding to the removed constraint, we calculate walkabout
strengths by assigning the special value m+1 to w, at line 3 of the algorithm
of walkabout strengths. When the algorithm finishes, some variables have
walkabout strengths m + 1. We need to try only constraints referring such
variables, because a constraint not referring such variables has no relation
to the removed constraint.

6.3 Implementation

Based on the HiRise algorithm, we implemented a constraint solver in C++.
As described, HiRise works as a solver for constraint hierarchies consisting
of linear equality constraints. To realize interactive GUIs, it provides two-
phase constraint satisfaction like the DETAIL constraint solver.

We implemented matrices of forms U and L using lists, not arrays, since
they tend to be sparse in actual applications. For applications generating
large constraint hierarchies, the list implementation can be expected to con-
tribute to less time and less space. Also, we defined P and @) as simple
fixed-size structures since we can express them with indices of columns to
swap or shift.

In practical applications, variables are dynamically added to or removed
from an HLS; that is, « is lengthened or shortened. Using the HiRise con-
straint solver, programmers can freely create and destroy variables, which
are implemented as ordinary objects in C++. We supported addition and
removal of variables in the following ways:

e When a constraint is added, the solver examines whether each variable
referred by the constraint is already registered. If a variable is new to
the solver, it records the variable in its internal variable list, which can
be regarded as . Although « is lengthened, we do not need to modify
the current matrices of forms P, @, U, and L, since we implemented
them not as arrays but as lists or simple structures using indices.

e When an existing variable is destroyed (which is reported by the de-
structor of the variable), the solver simply marks ‘null’ at its position
in its variable list. We do not shorten the variable list, not only because
such a task is time-consuming, but also because there may be wrong
connections among variables (remind that revoked constraints leave
their ‘phantom’ in the incremental algorithm). In the incremental al-
gorithm, such null variables hardly degrade the performance although

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 87

they may waste a little memory.

Since the HiRise constraint solver is implemented in C++, it can be
easily incorporated into various platforms, as opposed to the DETAIL con-
straint solver, written in Objective C.

For example, Figure 6.1 is a screen snapshot of a sample GUI application
using HiRise, which runs on Windows 95 or NT 4.0. It allows a user to
edit general graphs by adding nodes, fixing positions of nodes, and fixing
directions of edges. In this application, there are two kinds of nodes: nodes of
one kind, which are supplied by the application, are located in a circle when
the application is invoked; nodes of the other kind, which are added by the
user, are positioned at the centers of gravity of adjacent nodes. Therefore,
the positions of the latter nodes are determined by the former nodes, and
thus the application realizes automatic graph drawing.

-+ HiRiseDemo - [HiRiset]

T Demo Edit View Window Help 18l x|

plan: 0.000000 ms, exec: 0.000000 ms (vars: 24, #cons: 24) MUM 4

Figure 6.1: A sample GUI application using HiRise.

6.4 Performance Evaluation

This section evaluates the performance of the HiRise constraint solver.

6.4.1 Time Complexity

First, we provide the time complexity of the HiRise algorithm for satisfying
HLSs. For simplicity, we assume that the numbers n and m of variables and
constraints are large enough, and also that the count of incrementally added
or removed constraints is much smaller than n and m. Then primary parts
of the algorithm have the following time complexities:

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 88

e The time complexity of obtaining a triangular factorization from
scratch is O(mn?).

e The time complexity of incrementally modifying a triangular factor-
ization is O(n?).

e The time complexity of calculating variable values with a triangular
factorization is O(n?).

e The time complexity of computing walkabout strengths of variables is

O(n?).

Based on these complexities, we can estimate the time complexity of
each operation as follows:

e The planning phase for non-incremental constraint satisfaction re-
quires O(mn?) time.

e The planning phase for incrementally adding a constraint costs O(n?)
time if a constraint to revoke is successfully detected with walkabout
strengths (that is, only the enhanced strategy is performed). Other-
wise (that is, the basic strategy is necessary), it takes O(mn?) time.

e The planning phase for incrementally removing a constraint needs
O(m/n?) time, where m' indicates the number of unenforced con-
straints to try to satisfy instead of the removed one.

e The execution phase takes O(n?) time.

6.4.2 Experimental Results

We actually measured the performance of the HiRise constraint solver with
a few experiments. With this measurement, we evaluated the effect of walk-
about strengths on improving the efficiency of constraint satisfaction. For
this purpose, we compared the performance of the complete version of HiRise
with that of a version of HiRise that we disabled in compile time from the
enhanced strategy for incremental satisfaction of preferential constraints.
For these experiments, we compiled the HiRise constraint solver using
Microsoft Visual C++ 5.0 with the /O2 option, and executed test applica-
tions on a PC/AT compatible computer with a 266 MHz Intel Pentium II
processor that runs the Microsoft Windows NT 4.0 operating system.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 89

Binary Trees

The first experiment used an interactive application that allows us to edit a
binary tree by dragging a node in the tree, adding a node to the tree, and
removing a subtree from the tree. Figure 6.2 is a snapshot of the application,
which provides a binary tree whose height is 4.

o - [HiRisel]

3 o Edit Wiew Window Help e

Ready [[mum|

Figure 6.2: The application for editing binary trees.

Basically, the application layouts binary trees so that distances between
their neighboring leaves become equal. Their definition of constraints are
recursive, constructing a tree from its subtrees. In other words, it initially
generates leaf nodes as base subtrees, and then recursively produces a larger
subtree using two subtrees.

Each leaf node has four fields x, y, left, and right: fields x and y
indicate the position of the node; fields 1left and right express the left and
right bounds of the bounding box of the subtree whose top is the designated
node.

For each leaf node node, we define the following constraints:

(6.4) node.left + x unit = node.right
(6.5) node.x = (node.left + node.right)/2.

Intuitively, (6.4) means that the width of the ‘territory’ of node is x unit,
which is a global variable. This constraint is for locating leaf nodes at equal
intervals. Also, (6.5) centers node in the territory.

Each intermediate node has the additional two fields, left node and
right node, pointing to its children. For each intermediate node node, we

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 90

define the following constraints:

(6.6) node.left_child.right = node.right _child.left
(6.7) node.left = node.left child.left

(6.8) node.right = node.right child.right

(6.9) node.x = (node.left_child.x + node.right_child.x)/2
(6.10) node.y + y unit = node.left child.y

(6.11) node.y + y_unit = node.right _child.y.

Intuitively, (6.6) places the children of node side by side. (6.7) and (6.8)
determine the width of the bounding box of node based on those of its
children. (6.9) puts node at the center of its children. (6.10) and (6.11) put
the children y-unit under node.

Layouting binary trees based on this definition requires simultaneous
satisfaction of constraints. Therefore, classical local propagation constraint
solvers such as DeltaBlue cannot treat this layout. Also, although more
sophisticated local propagation solvers supporting cycles or constraint cells,
e.g. SkyBlue and DETAIL, handle the layout, it is difficult to efficiently solve
the constraint hierarchy for the layout; for a single binary tree, there exists
a large constraint cell that must vary as constraints are added or removed
because of the user’s manipulation. Thus the layout is a hard problem for
most local propagation solvers.

Numbers of variables and constraints can be estimated as follows: con-
sider a binary tree whose height is k; then the number of its nodes is 2¥ — 1,
the number of its variables is 2¥%2 — 4, and the number of its constraints
is 2¥t2 — 6. The actual application yields a slightly larger number of con-
straints by introducing weak constraints to dictate the behavior of binary
trees.

We performed two experiments: for the first experiment, we defined all
the constraints described above as required ones; for the second experiment,
we modified (6.4), (6.10), and (6.11) into strong preferential constraints.
Consequently, the ratios of required constraints in the first and second ex-
periments are approximately one hundred percent and sixty percent respec-
tively.

Table 6.1 shows the results of the first experiment. In this table, ‘basic’
indicates the version of HiRise that we disabled from the enhanced strategy
for incremental satisfaction of preferential constraints, and ‘complete’ points
to the normal version of HiRise, which is capable of both of the basic and
enhanced strategies. Also, ‘initial,’ ‘drag,” ‘stay,” ‘line,’ ‘add,” and ‘remove’

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 91

respectively denote the user’s manipulations for obtaining an initial layout,
dragging a node, staying a node, constraining a node to be on some straight
line, adding a new node, and removing an existing node.

height 8 9 10

all constraints 1022 2046 4094

required constraints 1018 2042 4090

phase plan exec | plan exec | plan exec

basic initial 270 <10 | 1172 20 | 6809 81
drag <10 10 10 20 30 90
stay <10 10 10 20 30 80
line <10 10 10 20 20 80
add 10 10 50 20 | 161 90
remove 10 10 50 20 | 170 90

complete initial 261 10 | 1161 31| 6189 80
drag 20 10 80 20 | 310 80
stay 20 <10 10 20 30 80
line 10 10 50 30 | 220 91
add 60 10 | 230 20 | 861 91
remove 40 <10 | 120 20 | 471 90

Table 6.1: Times in milliseconds to edit binary trees defined with required
constraints.

The results show that both of the versions of HiRise cost similar times
to obtain initial layouts. This is because obtaining initial layouts requires
non-incremental constraint satisfaction, for which they work almost equally.
For the other editing operations, both of the versions took much less times
than obtaining initial layouts since they performed incremental constraint
satisfaction. These results suggest that HiRise enables real-time interaction
even for thousands of constraints. By contrast to the non-incremental case,
incremental constraint satisfaction of the complete version was a few times
to tens of times slower than that of the basic version. We can understand
that maintaining walkabout strengths became an overhead in the complete
version because most constraints were required in this experiment.

Next, Table 6.2 gives the results of the second experiment. As noted, this
is a case that the percentage of required constraints is about sixty. In this
experiment, the basic version of HiRise exhibited a remarkable slowdown,
which were hardly acceptable to real-time interaction. By contrast, the

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 92

complete version performed stably.6

height 8 9 10

all constraints 1022 2046 4094

required constraints 636 1276 2556

phase plan exec | plan exec | plan exec

basic initial 230 <10 | 922 10 | 4647 10
drag 130 <10 | 511 <10 | 2944 <10
stay 120 <10 | 520 <10 | 2924 <10
line 120 <10 | 511 <10 | 2884 10
add 130 <10 | 541 <10 | 3015 <10
remove 150 <10 | 591 <10 | 3235 <10

complete initial 231 <10 | 912 <10 | 4226 11
drag 10 <10 10 <10 30 <10
stay 10 <10 10 <10 30 <10
line <10 <10 10 <10 30 <10
add 20 <10 30 <10 80 10
remove 10 <10 20 <10 60 10

Table 6.2: Times in milliseconds to edit binary trees defined with required
and preferential constraints.

General Trees

Next, we measured the performance of HiRise using general trees. The
application utilized was developed by extending the previous application for
editing binary trees so that a single node could have an arbitrary number
of children as depicted in Figure 6.3.

This application generates random trees that are not balanced. Specifi-
cally, when a user invokes the application, the user is prompted to input the
height of a binary tree to generate, together with the maximum number of
children that a single intermediate node tree can have. Then the application
will automatically generate a random tree according to the user’s input. In
this experiment, we used trees whose height is 9 and the maximum number
of whose children is 4.7

5 Actually, it became faster than the first experiment. We can understand that it was
an accidental result due to sparseness of HLSs. Such cases would decrease if we treated
sparseness better by analyzing HLSs with, e.g., ordering.

"The user can also specify a seed of random numbers. Using this feature, we obtained

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 93

- HiRiseDamo - [HiRize2]

7 Damo Edit View lindow Hele NEIET

plan: 0.000000 ms, exec: 0.000000 ms Mhvars: 134, #cons: 134) MUmM 7

Figure 6.3: The application for editing general trees.

In the same way as the previous experiment on binary trees, we examined
two cases that the ratios of required constraints were approximately one
hundred percent and sixty percent. As Table 6.3 shows, the complete version
of the HiRise constraint solver exhibited stable performance throughout this

experiment.

all constraints 2882 2882

required constraints 2878 1730

phase plan exec | plan exec

basic initial 2314 40 | 2023 10
drag 10 40 | 1242 10
stay 10 50 | 1212 10
line 10 50 | 1211 10
add 80 50 | 1241 10
remove 90 50 | 1312 <10

complete initial 2484 40 | 2023 <10
drag 180 50 30 <10
stay 180 51 20 <10
line 120 40 20 <10
add 420 41 50 10
remove 201 50 30 10

Table 6.3: Times in milliseconds to edit general trees.

the same shape of trees throughout this experiment.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 94

Koch’s Curve

Finally, we investigated the performance of HiRise using Koch’s curve, which
is known as a fractal figure. The application that we constructed displays
a polyline that is an approximation of Koch’s curve at a given level as
illustrated in Figure 6.4, and allows its user to resize the polyline by dragging
one of its vertices, to move it by dragging its top vertex, and to give an
additional detail locally to one of its edges as depicted in Figure 6.5.

i HiRiseDemo - [HiRise1]

[*d Demo Edit Wiew Windaw Help =18 x|

plan: 110000000 ms, exee: 10.000000 ms (vars: 515, #oons: 515) MU 5

Figure 6.4: The application for manipulating Koch’s curve.

Ready I >

Figure 6.5: Adding details locally to the approximation of Koch’s curve.

In this experiment, we used an approximation of Koch’s curve at level
5. Initially, the application generates 2051 constraints.

This experiment showed that the complete version of HiRise usually
performed stably in incremental constraint satisfaction. However, in mov-
ing the figure by dragging its top vertex, the complete version required a
little longer time for planning than the basic version. It was because there
may exist cases that the enhanced strategy for incremental satisfaction of

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 95

preferential constraints is not applicable; in such cases, after failing in the
enhanced strategy, HiRise must apply the basic strategy. However, such
cases are quite rare, and also, even if such a case occurs, the unsuccessful
enhanced strategy will take a much shorter time than the basic strategy to
follow. Thus it is not disadvantageous to perform the enhanced strategy
before the basic one.

all constraints 2051 2051

required constraints 2048 1365

phase plan exec | plan exec

basic initial 1592 20 | 2093 40
resize 10 20 | 1301 50
move 20 20 | 1332 40
add 30 30 | 1282 40

complete initial 1593 20 | 2083 50
resize 120 20 | 201 40
move 60 30 | 1372 40
add 261 20 | 441 40

Table 6.4: Times in milliseconds to manipulate Koch’s curve.

6.5 Discussion

This section provides minor discussions on the HiRise constraint solver.

6.5.1 Techniques for Sparse Matrices

Currently, the HiRise constraint solver does not incorporate known opti-
mization techniques for sparse matrices. However, it is possible to apply
certain preprocessing techniques for sparse matrices, e.g. ordering, to a given
set of required constraints, and they are expected to be effective for speedup
of constraint satisfaction. To the contrary, it is difficult to apply such tech-
niques to preferential constraints, because it is not possible to simply alter
their order.

Another approach to sparse matrices might use iterative methods, which
satisfy non-hierarchical linear systems by repeatedly finding better approx-
imate solutions, and which are widely adopted to solve sparse systems. To
introduce iterative methods is quite difficult in our current framework of
HLSs, and we must need additional basic studies on HLSs.

© 1997 Hiroshi HOSOBE

CHAPTER 6. THE HIRISE CONSTRAINT SOLVER 96

6.5.2 Least-Squares Method

As we described in Subsection 5.5.2, we can incorporate into HLSs a hybrid
comparator capable of the least-squares method. Also, we can accommodate
the HiRise algorithm to the least-squares method.

The basic idea is to use walkabout strengths to find constraints to re-
lax. When we add a preferential constraint, we can find, with walkabout
strengths, an existing constraint to revoke. If the added one and the found
one are constraints to be relaxed together, we can replace them with another
constraint that indicates the relaxed form of them.

This technique depends on the fact that the over-constrained set of linear
equations to be solved with the least-squares method, Az = ¢, can be
represented as a set of ordinary linear equations as follows [2]:

AT Az = ATe.

© 1997 Hiroshi HOSOBE

Chapter 7

Related Work

This chapter describes previous researches on constraints, especially from
the viewpoints of treatment and satisfaction of over-constrained systems.

7.1 Research Areas on Constraints

Since constraints are general tools for problem solving, many researches in
various areas introduce constraints for their own purposes. The main areas
are as follows:

Artificial intelligence employs constraints for a variety of problems such
as scheduling, reasoning, belief maintenance, and machine vision [53,
78, 85]. Most of such problems are generally formalized as constraint
satisfaction problems (CSPs), which handle finite domains, and have
been extensively studied [53, 85].

Logic programming adopts constraints to expand problem domains by
replacing the traditional unification mechanism with more general con-
straint satisfaction techniques. Such an extension is called constraint
logic programming [17]. Representative of constraint logic program-
ming languages are Prolog III [18] and CLP(R) [48].

Graphical user interfaces (GUIs) utilize constraints to manage internal
data and visual objects [68]. This approach can be back to the Sketch-
pad system [79], but the current stream seems to have its source at an
object-oriented system called ThingLab [3, 6].

Another research area is, for example, imperative programming [20, 21, 35,
54, 55, 56, 57] and databases.

97

© 1997 Hiroshi HOSOBE

CHAPTER 7. RELATED WORK 98

Usually, distinct areas take different approaches to constraints. Also,
they employ different algorithms for constraint satisfaction. In the rest of
this chapter, we mainly review researches related to GUIs.

7.2 Ordinary Constraint Systems

In this section, we focus on ordinary constraint systems, which do not handle
over-constrained situations (theoretically, they produce empty solution sets
for such situations).

For ordinary systems, many numerical methods for satisfying systems
of algebraic constraints, such as linear equations, linear inequalities, and
quadratic equations, can be used [33, 45, 46, 67]. The Oak system real-
izes real-time constraint satisfaction by employing linear approximation for
quadratic constraints [84]. Snap-together mathematics is a technique for
approximation of constraint systems based on dynamic models and solves
them efficiently [26, 27, 28].

Local propagation has often been applied to ordinary constraint systems.
Sketchpad is the first GUI system that adopts a local propagation technique
called ‘one-pass method’ (it also uses numerical methods on failure of the
one-pass method) [79]. Most systems employ one-way constraints, whose
output variables are predetermined by programmers [42, 63, 64, 65, 66, 81].
By contrast, Fabrik handles two-way constraints, each of which has two
potential output [47], and ThingLab [3, 6] and CONSTRAINTS [78] exploit
multi-way constraints, where each variable can be an output.

In the context of local propagation for ordinary systems, researchers
have been investigated various topics, for example, incremental satisfaction
of constraint systems [43, 88], treatment of pointer variables [41, 87], compi-
lation of constraint systems [89], support of computer-supported cooperative
work [34], and ‘light’ implementation of constraints [44].

Another technique for solving ordinary systems is transformation. GITS
uses a simple technique that replaces constraints using a pre-defined ta-
ble [69]. The Magritte graphic editor utilizes algebraic transformation [29].
Systems employing term rewriting are also proposed [35, 89].

Depart from GUISs, techniques for solving constraint systems over finite
domains have been extensively studied in the context of CSPs [85]. Tradi-
tional approaches are search techniques such as backtracking and forward
checking [85]. Recently, problem reduction techniques using ‘arc consistency’
are often explored [1, 32, 53, 85].

© 1997 Hiroshi HOSOBE

CHAPTER 7. RELATED WORK 99

7.3 Least-Squares Problems

One of the simplest approaches for treating over-constrained situations is
the least-squares method [2]. In this approach, conflicting constraints in
over-constrained systems are relaxed by minimizing sums of squares of their
errors.

The ThingLab system, which normally uses local propagation, performs
a hill-climbing least-squares technique called relaxation in case local propa-
gation is not applicable [3, 6]. The TRIP systems divide constraint systems
consisting of linear equations into two levels, and applies the least-squares
method to the weaker level [52, 59, 62, 82, 83].

7.4 Constraint Hierarchies

This section presents previous work on constraint hierarchies from the view-
points of theories and algorithms.

7.4.1 Theories

Borning et al. formulated constraint hierarchies [7, 9, 11, 90, 91, 92, 93],
and studied their properties [9, 91]. They also integrated constraint hierar-
chies with logic programming as hierarchical constraint logic programming
(HCLP), and explored theoretical properties of HCLP [11, 90, 91, 92, 93].

Jampel constructed a certain HCLP instance that separates the HCLP
scheme into compositional and non-compositional parts [50]. The method
is expected to improve the efficiency of interpreters and compilers since the
compositional part is efficiently implementable.

Wolf formalized ordered constraint hierarchies by defining a hierarchy
comparator that makes constraints totally ordered in each level, and also
provided a method for transforming ordered constraint hierarchies into or-
dinary constraint systems [94].

7.4.2 Algorithms

This subsection presents past researches on satisfaction of constraint hi-
erarchies by categorizing them into the refining method, the optimization
approach, local propagation, and others.

© 1997 Hiroshi HOSOBE

CHAPTER 7. RELATED WORK 100

The Refining Method

Borning’s early system incorporating constraint hierarchies applied the re-
laxation technique to each level of the hierarchies, and obtained least-
squares-better solutions [7].

The Orange algorithm finds one or all solutions of hierarchies of linear
equality and inequality constraints by performing the simplex method in
each level [22].

DeltaStar is a general algorithm developed for an HCLP interpreter. It
transforms a constraint hierarchy solved with weighted-sum-metric-better,
worst-case-better, or locally-metric-better into a series of linear program-
ming problems by successively solving each level from the strongest to the
weakest [90].

Indigo is an algorithm that finds locally-metric-better solutions of acyclic
(i.e. non-simultaneous) hierarchies of inequality constraints [5]. It is unique
in that it performs interval propagation to handle inequalities instead of a
numerical technique, and is efficient enough to realize GUIs.

The Optimization Approach

Cassowary and QOCA are constraint solvers for GUIs that maintain hi-
erarchies of linear equality and inequality constraints using optimization
techniques [12]. Cassowary obtains locally-error-better solutions by using
the simplex method for linear programming, and QOCA finds least-squares-
better solutions by using the active set method for quadratic programming.

Local Propagation

Blue is an algorithm that obtains one locally-predicate-better solution of
a constraint hierarchy consisting of multi-way constraints [58], and Delta-
Blue is an incremental version of Blue [22, 58, 76]. Both of them embody
a problem that they cannot solve hierarchies involving cycles. Suzuki et
al. modified DeltaBlue in three ways to speed up its planning phase [80].

SkyBlue is an incremental algorithm for solving hierarchies of multi-way
constraints [70, 71, 72, 73, 74, 75]. It addresses simultaneous constraints
using pluggable cycle solvers, and handles constraints with multi-output
methods.

QuickPlan is an algorithm for incrementally resolving hierarchies of
multi-way constraints [86]. It can solve constraint hierarchies if they have
at least one acyclic solution graph.

© 1997 Hiroshi HOSOBE

CHAPTER 7. RELATED WORK 101

Houria [14] and Houria IT [15] are algorithms that solve constraint hier-
archies using a certain kind of global hierarchy comparators.

Others

Techniques for compiling constraint hierarchies into imperative procedures
are proposed [19, 30, 58]. They them limit constraint hierarchies to being
statically defined, that is, they cannot dynamically change hierarchies after
compilation.

UltraViolet is a hybrid algorithm that divides constraint hierarchies into
subgraphs based on graph topology and constraint types and then invokes
appropriate subsolvers [8, 10].

Menezes’s incremental hierarchical constraint solver satisfies constraint
hierarchies over finite domains using a search technique [60].

7.5 Other Over-Constrained Systems

Hattori proposed executable constraints [31]. Each executable constraint is
a macro defined by an end user of a GUI system, and the system computes
solutions by discarding executable constraints that cause conflicts.

In the area of artificial intelligence, various approaches have been pro-
vided to handle over-constrained CSPs [49]. Freuder and Wallace proposed
partial constraint satisfaction for handling constraint satisfaction problems
that are impossible or impractical to solve, and also presented algorithms
searching for approximate solutions by ‘weakening’ CSPs over finite domains
[23, 24]. Jampel provided a formal method for transformations between con-
straint hierarchies and partial constraint satisfaction problems [51].

© 1997 Hiroshi HOSOBE

Chapter 8

Conclusion and Future Work

This chapter concludes the dissertation and provides future directions.

8.1 Conclusion

In this dissertation, we discussed properties and satisfaction of hierarchical
constraint systems (HCSs) from the viewpoint of local propagation. Basi-
cally, local propagation is a method that gradually satisfies constraints by
scheduling them beforehand. Also, it is usually associated with incremental
constraint satisfaction.

Since classical local propagation algorithms solved constraints one by
one, local propagation has been considered to be restricted to dataflow con-
straints. However, in this research, we conceived that the essence of local
propagation is its unique strategy of scheduling constraints—it sometimes
schedules weak constraints prior to stronger ones.

Based on this idea, we formalized generalized local propagation (GLP)
by targeting one of the most popular formulations of HCSs, the theory of
constraint hierarchies. With GLP, we revealed not only that we can intro-
duce simultaneous constraint satisfaction into local propagation algorithms,
but also that we may extend methods for satisfying constraint hierarchies
from local satisfiers to an important class of global satisfiers via a concept
that we call global semi-monotonicity.

Using the result of GLP, we contrived the DETAIL algorithm by ex-
tending conventional incremental local propagation algorithms for satisfy-
ing dataflow constraints. It is the first local propagation algorithm that
simulates a global satisfier.

Conventional local propagation algorithms, including DETAIL, uniquely

102

© 1997 Hiroshi HOSOBE

CHAPTER 8. CONCLUSION AND FUTURE WORK 103

satisfies something corresponding to a block in GLP at each step. However,
GLP itself does not compel us to satisfy blocks uniquely. Thus we attempted
to apply the background idea of GLP to numerical algorithms by switching
the kind of constraints from dataflow ones to algebraic ones.

To show the idea concretely, we adopted linear equality constraints as
algebraic constraints, and defined hierarchical linear systems (HLSs), which
can be viewed as a specialization of constraint hierarchies in linear equal-
ity constraints. Then we successfully obtained constraint scheduling like
GLP using a notion called hierarchical independence. Because of the alge-
braic properties of linear constraints, we could become more aggressive in
constraint scheduling than GLP.

Employing the result of HLSs, we designed the HiRise algorithm, which
solves HLSs numerically. We proved that local propagation contributes to
efficiency by associating it with incremental constraint satisfaction.

In summary, we disclosed that local propagation is a general approach to
satisfaction of HCSs with various constraints, not a special method limited
to dataflow constraints.

8.2 Future Work

Finally, we describe our future work.

8.2.1 Enhancing the GLP Theory

The current GLP theory discusses sufficient conditions for guaranteeing that
a solution generated by a single ordered partition is correct. However, we
cannot always satisfy constraint hierarchies based only on the conditions.
For example, the HiRise algorithm must sometimes do non-incremental con-
straint satisfaction because it cannot guarantee the correctness of the solu-
tion using walkabout strengths. Thus we need more powerful methods.

A possible direction is that we treat ‘dynamic’ update of ordered parti-
tions as well as such a single ‘static’ ordered partition as is with the current
GLP theory. For example, it may be useful to discuss the SkyBlue algorithm,
which obtains solutions using backtracking.

8.2.2 More Powerful Constraint Solvers

Our primary goal is to develop powerful constraint solvers. Since DETAIL
and HiRise are not our ultimate goals, we must pursue more powerful con-
straint solvers. For this goal, we try various approaches including, for exam-

© 1997 Hiroshi HOSOBE

CHAPTER 8. CONCLUSION AND FUTURE WORK 104

ple, the optimization approach. However, we believe that the spirit of local
propagation will also survive by integrating into other approaches.

© 1997 Hiroshi HOSOBE

Bibliography

[1] Bessiére, C. and M.-O. Cordier, “Arc-Consistency and Arc-Consistency
Again,” in Proceedings of the Eleventh National Conference on Artificial
Intelligence, July 1993, pp. 108-113.

[2] Bjorck, A., Numerical Methods for Least Squares Problems. Philadel-
phia: STAM, 1996.

[3] Borning, A., “The Programming Language Aspects of ThingLab, a
Constraint-Oriented Simulation Laboratory,” ACM Transactions on
Programming Languages and Systems, vol. 3, no. 4, Oct. 1981, pp. 353—
387.

[4] Borning, A., “Problem with SkyBlue and Cycles.” Posted to
comp.constraints (also available at http://www.cs.washington.edu/re-
search/constraints/skyblue-cycles.html), Mar. 1995.

[6] Borning, A., R. Anderson, and B. Freeman-Benson, “Indigo: A Lo-
cal Propagation Algorithm for Inequality Constraints,” in Proceedings
of the ACM Symposium on User Interface Software and Technology
(UIST), Nov. 1996, pp. 129-136.

[6] Borning, A. and R. Duisberg, “Constraint-Based Tools for Building
User Interfaces,” ACM Transactions on Graphics, vol. 5, no. 4, Oct.
1986, pp. 345-374.

[7] Borning, A., R. Duisberg, B. Freeman-Benson, A. Kramer, and
M. Woolf, “Constraint Hierarchies,” in Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), Oct. 1987, pp. 48-60.

[8] Borning, A. and B. Freeman-Benson, “UltraViolet: A Constraint Satis-
faction Algorithm for Interactive Graphics,” CONSTRAINTS: An In-
ternational Journal, To appear.

105

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 106

[9]

[10]

Borning, A., B. Freeman-Benson, and M. Wilson, “Constraint Hier-
archies,” Lisp and Symbolic Computation, vol. 5, no. 3, Sept. 1992,
pp. 223-270.

Borning, A. and B. N. Freeman-Benson, “The OTI Constraint Solver:
A Constraint Library for Constructing Interactive Graphical User Inter-
faces,” in Principles and Practice of Constraint Programming—CP’95,

vol. 976 of Lecture Notes in Computer Science, Springer-Verlag, Oct.
1995, pp. 624-628.

Borning, A., M. Maher, A. Martindale, and M. Wilson, “Constraint
Hierarchies and Logic Programming,” in Proceedings of the Sizth Inter-
national Conference on Logic Programming, June 1989, pp. 147-164.

Borning, A., K. Marriott, P. Stuckey, and Y. Xiao, “Solving Linear
Arithmetic Constraints for User Interface Applications,” in Proceedings
of the ACM Symposium on User Interface Software and Technology
(UIST), Oct. 1997, pp. 87-96.

Boundy, J. A. and U. S. R. Murty, Graph Theory with Applications.
Macmillan Press, 1976.

Bouzoubaa, M., B. Neveu, and G. Hasle, “Houria: A Solver for Equa-
tional Constraints in a Hierarchical System,” in Proceedings of the
Workshop on Over-Constrained Systems at CP’95, Sept. 1995.

Bouzoubaa, M., B. Neveu, and G. Hasle, “Houria II: A Solver for Hier-
archical Constraint Systems,” in Proceedings of the Workshop on Con-
straints for Graphics and Visualization at CP’95, Sept. 1995.

Chvétal, V., Linear Programming. New York: Freeman, 1983.

Cohen, J., “Constraint Logic Programming Languages,” Communica-
tions of the ACM, vol. 33, no. 7, July 1990, pp. 52—68.

Colmerauer, A., “An Introduction to Prolog II1,” Communications of
the ACM, vol. 33, no. 7, July 1990, pp. 69-90.

Freeman-Benson, B. N., “A Module Mechanism for Constraints in
Smalltalk,” in Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Oct.
1989, pp. 389-396.

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 107

[20]

[21]

[27]

28]

Freeman-Benson, B. N. and A. Borning, “The Design and Implemen-
tation of Kaleidoscope’90, A Constraint Imperative Programming Lan-
guage,” in Proceedings of the IEEE Conference on Computer Lan-
guages, Apr. 1992, pp. 174-180.

Freeman-Benson, B. N. and A. Borning, “Integrating Constraints with
an Object-Oriented Language,” in Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP), vol. 615 of Lecture
Notes in Computer Science, Springer-Verlag, June/July 1992, pp. 268—
286.

Freeman-Benson, B. N., J. Maloney, and A. Borning, “An Incremental
Constraint Solver,” Communications of the ACM, vol. 33, no. 1, Jan.
1990, pp. 54-63.

Freuder, E. C., “Partial Constraint Satisfaction,” in Proceedings of
the 11th International Joint Conference on Artificial Intelligence, Aug.
1989, pp. 278-283.

Freuder, E. C. and R. J. Wallace, “Partial Constraint Satisfaction,”
Artificial Intelligence, vol. 58, 1992, pp. 21-70.

Gangnet, M. and B. Rosenberg, “Constraint Programming and Graph
Algorithms,” in Proceedings of Second International Symposium on Ar-
tificial Intelligence and Mathematics, Jan. 1992.

Gleicher, M., “A Graphical Toolkit Based on Differential Constraints,”
in Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST), Nov. 1993, pp. 109-120.

Gleicher, M. and A. Witkin, “Differential Manipulation,” in Proceedings
of Graphics Interface 91, June 1991, pp. 61-67.

Gleicher, M. and A. Witkin, “Supporting Numerical Computations in
Interactive Contexts,” in Graphics Interface ’93, May 1993, pp. 138—
145.

Gosling, J., “Algebraic Constraints,” Tech. Rep. CMU-CS-83-132, De-
partment of Computer Science, Carnegie-Mellon University, May 1983.

Harvey, W., P. Stuckey, and A. Borning, “Compiling Constraint Solving
using Projection,” in Proceedings of the Third International Conference
on the Principles and Practice of Constraint Programming, 1997.

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 108

[31]

[33]

[34]

[35]

[36]

[37]

Hattori, T., “Integration of Macros and Constraints in Editors,” in
Interactive Systems and Software IV (JSSST WISS’96) (J. Tanaka,
ed.), vol. 16 of Lecture Notes in Software Science, Kindai-Kagaku-Sha,
Dec. 1996, pp. 41-49. In Japanese.

Hentenryck, P. V., Y. Deville, and C.-M. Teng, “A Generic Arc-
Consistency Algorithm and its Specializations,” Artificial Intelligence,
vol. 57, 1992, pp. 291-321.

Heydon, A. and G. Nelson, “The Juno-2 Constraint-Based Drawing
Editor,” Research Report 131a, Digital Systems Research Center, Dec.
1994.

Hill, R. D., “The Rendezvous Constraint Maintenance System,” in Pro-
ceedings of the ACM Symposium on User Interface Software and Tech-
nology (UIST), Nov. 1993, pp. 225-234.

Horn, B., “Constraint Patterns As a Basis For Object Oriented Pro-
gramming,” in Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Oct.
1992, pp. 218-233.

Hosobe, H., Matsuoka, and A. Yonezawa, “Efficient Satisfaction of Con-
straint Hierarchies with Inequalities,” in Interactive Systems and Soft-
ware IIT (JSSST WISS’95) (J. Tanaka, ed.), vol. 12 of Lecture Notes
in Software Science, Kindai-Kagaku-Sha, Dec. 1995, pp. 123-132. In
Japanese.

Hosobe, H., Matsuoka, and A. Yonezawa, “Efficient Satisfaction of
Constraint Hierarchies Using Hierarchical Linear Systems,” in Interac-
tive Systems and Software V (JSSST WISS’97) (R. Onai, ed.), vol. 18
of Lecture Notes in Software Science, Kindai-Kagaku-Sha, Dec. 1997,
pp- 129-134. In Japanese.

Hosobe, H., S. Matsuoka, and A. Yonezawa, “Generalized Local Propa-
gation: A Framework for Solving Constraint Hierarchies,” in Principles
and Practice of Constraint Programming—CP’96 (E. C. Freuder, ed.),
vol. 1118 of Lecture Notes in Computer Science, Springer-Verlag, Aug.
1996, pp. 237-251.

Hosobe, H., K. Miyashita, S. Takahashi, S. Matsuoka, and A. Yonezawa,
“Locally Simultaneous Constraint Satisfaction,” in Interactive Systems
and Software I (JSSST WISS’93) (A. Takeuchi, ed.), vol. 7 of Lecture

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 109

[40]

[41]

[42]

[43]

[44]

[45]

[48]

Notes in Software Science, Kindai-Kagaku-Sha, Sept. 1994, pp. 49-56.
In Japanese.

Hosobe, H., K. Miyashita, S. Takahashi, S. Matsuoka, and A. Yonezawa,
“Locally Simultaneous Constraint Satisfaction,” in Principles and Prac-
tice of Constraint Programming—PPCP’9/ (A. Borning, ed.), vol. 874
of Lecture Notes in Computer Science, Springer-Verlag, Oct. 1994,
pp. 51-62.

Hudosn, S. E., “A System for Efficient and Flexible One-Way Con-
straint Evaluation in C++.” 1993.

Hudson, S. E., “Graphical Specification of Flexible User Interface Dis-
plays,” in Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST), Nov. 1989, pp. 105-114.

Hudson, S. E., “Incremental Attribute Evaluation: A Flexible Algo-
rithm for Lazy Update,” ACM Transactions on Programming Lan-
guages and Systems, vol. 13, no. 3, July 1991, pp. 315-341.

Hudson, S. E. and I. Smith, “Ultra-Lightweight Constraints,” in Pro-
ceedings of the ACM Symposium on User Interface Software and Tech-
nology (UIST), Nov. 1996, pp. 147-155.

Igarashi, T., S. Matsuoka, S. Kawachiya, and H. Tanaka, “In Search
for an Ideal Computer-Assisted Drawing System,” in Proceedings of
the Sizth IFIP Conference on Human-Computer Interaction (INTER-
ACT’97), July 1997, pp. 104-111.

Igarashi, T., S. Matsuoka, S. Kawachiya, and H. Tanaka, “Interactive
Beautification: A Technique for Rapid Geometric Design,” in Proceed-
ings of the ACM Symposium on User Interface Software and Technology
(UIST), Oct. 1997, pp. 105-114.

Ingalls, D., S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle, “Fab-
rik A Visual Programming Environment,” in Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), Sept. 1988, pp. 176-190.

Jaffar, J., S. Michaylov, P. J. Stuckey, and R. H. C. Yap, “The CLP(R)
Language and System,” ACM Transactions on Programming Languages
and Systems, vol. 14, no. 3, 1992, pp. 339-395.

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 110

[49]

[56]

[57]

[58]

Jampel, M., “A Brief Overview of Over-Constrained Systems,” in Qver-
Constrained Systems, vol. 1106 of Lecture Notes in Computer Science,
Springer-Verlag, Aug. 1996, pp. 1-22.

Jampel, M., “A Compositional Theory of Constraint Hierarchies (Oper-
ational Semantics),” in Over-Constrained Systems, vol. 1106 of Lecture
Notes in Computer Science, Springer-Verlag, Aug. 1996, pp. 189-206.

Jampel, M., J.-M. Jacquet, D. Gilbert, and S. Hunt, “Transformations
between HCLP and PCSP,” in Principles and Practice of Constraint
Programming—CP’96 (E. C. Freuder, ed.), vol. 1118 of Lecture Notes
in Computer Science, Springer-Verlag, Aug. 1996, pp. 2562—-266.

Kamada, T. and S. Kawai, “A General Framework for Visualizing Ab-
stract Objects and Relations,” ACM Transactions on Graphics, vol. 10,
no. 1, Jan. 1991, pp. 1-39.

Kumar, V., “Algorithms for Constraint-Satisfaction Problems: A Sur-
vey,” AI Magazine, Spring 1992, pp. 32—44.

Lopez, G., “The Design and Implementation of Keleidoscope, A Con-
straint Imperative Language (Ph.D. Dissertation),” Tech. Rep. 97-04-
08, Dept. of Computer Science and Engineering, University of Wash-
ington, Apr. 1997.

Lopez, G., B. Freeman-Benson, and A. Borning, “Kaleidoscope: A
Constraint Imperative Programming Language,” Tech. Rep. 93-09-04,
Dept. of Computer Science and Engineering, University of Washington,
Sept. 1993.

Lopez, G., B. Freeman-Benson, and A. Borning, “Constraints and Ob-
ject Identity,” in Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), no. 821 in Lecture Notes in Com-
puter Science, pp. 260-279, Springer-Verlag, July 1994.

Lopez, G., B. Freeman-Benson, and A. Borning, “Implementing Con-
straint Imperative Programming Languages: the Kaleidoscope’93 Vir-
tual Machine,” in Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA), Oct. 1994, pp. 259-271.

Maloney, J. H., A. Borning, and B. N. Freeman-Benson, “Constraint
Technology for User-Interface Construction in ThinglLab II,” in Proceed-

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 111

[61]

[66]

[67]

ings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), Oct. 1989, pp. 381-388.

Matsuoka, S., S. Takahashi, T. Kamada, and A. Yonezawa, “A General
Framework for Bi-Directional Translation between Abstract and Picto-

rial Data,” ACM Transactions on Information Systems, vol. 10, no. 4,
Oct. 1992, pp. 408-437.

Menezes, F., P. Barahona, and P. Codognet, “An Incremental Hierar-
chical Constraint Solver,” in Proceedings of the First Workshop on Prin-
ciples and Practice of Constraint Programming (PPCP’93) (Saraswat
and van Hentenryck, eds.), MIT Press, 1994.

Miyashita, K., S. Matsuoka, S. Takahashi, and A. Yonezawa, “Interac-
tive Generation of Graphical User Interfaces by Multiple Visual Exam-

ples,” in Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST), Nov. 1994, pp. 85-94.

Miyashita, K., S. Matsuoka, S. Takahashi, A. Yonezawa, and T. Ka-
mada, “Declarative Programming of Graphical Interfaces by Visual Ex-
amples,” in Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST), Nov. 1992, pp. 107-116.

Myers, B. A., Creating User Interfaces by Demonstration. San Diego:
Academic Press, 1988.

Myers, B. A., “Creating User Interfaces Using Programming by Ex-
ample, Visual Programming, and Constraints,” ACM Transactions
on Programming Languages and Systems, vol. 12, no. 2, Apr. 1990,
pp. 143-177.

Myers, B. A., D. A. Giuse, R. B. Dannenberg, B. Vander Zanden, D. S.
Kosbie, E. Pervin, A. Mickish, and P. Marchal, “Garnet: Comprehen-
sive Support for Graphical, Highly Interactive User Interfaces,” IEEE
Computer, vol. 23, no. 11, Nov. 1990, pp. 71-85.

Myers, B. A., D. A. Giuse, and B. Vander Zanden, “Declarative Pro-
gramming in a Prototype-Instance System: Object-Oriented Program-
ming without Writing Methods,” in Proceedings of the ACM Confer-

ence on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), Oct. 1992, pp. 184-200.

Nelson, G., “Juno: a Constraint-based Graphics System,” Computer
Graphics (SIGGRAPH’85), vol. 19, no. 3, July 1985, pp. 235-243.

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 112

[68]

[69]

[72]

[73]

[75]

[76]

[77]

Olsen, Jr., D. R., User Interface Management Systems: Models and Al-
gorithms. San Mateo, California: Morgan Kaufmann Publishers, 1992.

Olsen Jr., D. R. and K. Allan, “Creating Interactive Techniques by
Symbolically Solving Geometric Constraints,” in Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST),
Oct. 1990, pp. 102-107.

Sannella, M., “The SkyBlue Constraint Solver,” Tech. Rep. 92-07-02,
Dept. of Computer Science and Engineering, University of Washington,
Feb. 1993.

Sannella, M., “Analyzing and Debugging Hierarchies of Multi-way Lo-
cal Propagation Constraints,” in Principles and Practice of Constraint
Programming—PPCP’9/ (A. Borning, ed.), vol. 874 of Lecture Notes
wn Computer Science, Springer-Verlag, Oct. 1994, pp. 63-77.

Sannella, M., “Constraint Satisfaction and Debugging for Interactive
User Interfaces,” Tech. Rep. 94-09-10, Dept. of Computer Science and
Engineering, University of Washington, Sept. 1994.

Sannella, M., “SkyBlue: A Multi-Way Local Propagation Constraint
Solver for User Interface Construction,” in Proceedings of the ACM

Symposium on User Interface Software and Technology (UIST), Nov.
1994, pp. 137-146.

Sannella, M., “The SkyBlue Constraint Solver and its Applications,”
in Proceedings of the First Workshop on Principles and Practice of
Constraint Programming (PPCP’93) (Saraswat and van Hentenryck,
eds.), MIT Press, 1994.

Sannella, M. and A. Borning, “Multi-Garnet: Integrating Multi-Way
Constraints with Garnet,” Tech. Rep. 92-07-01, Dept. of Computer
Science and Engineering, University of Washington, July 1992.

Sannella, M., B. Freeman-Benson, J. Maloney, and A. Borning, “Multi-
way versus One-way Constraints in User Interfaces: Experience with the
DeltaBlue Algorithm,” Tech. Rep. 92-07-05, Dept. of Computer Science
and Engineering, University of Washington, July 1992.

Satoh, K. and A. Aiba, “Computing Soft Constraints by Hierarchical
Constraint Logic Programming,” Tech. Rep. TR-610, ICOT, Japan,
Jan. 1991.

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 113

[78]

[82]

Sussman, G. J. and G. L. Steele Jr., “CONSTRAINTS—A Language for
Expressing Almost Hierarchical Descriptions,” Artificial Intelligence,
vol. 14, 1980, pp. 1-39.

Sutherland, I. E., “Sketchpad: A Man-Machine Graphical Communi-
cation System,” in Proceedings of the AFIPS Spring Joint Conference,
vol. 23, 1963, pp. 329-346.

Suzuki, T., N. Kakinuma, and T. Tokuda, “An Experimental Compar-
ison of Three Modified DeltaBlue Algorithms,” in Principles and Prac-
tice of Constraint Programming—CP’96 (E. C. Freuder, ed.), vol. 1118
of Lecture Notes in Computer Science, Springer-Verlag, Aug. 1996,
pp- 425-435.

Szekely, P. A. and G. A. Myers, “A User Interface Toolkit Based on
Graphical Objects and Constraints,” in Proceedings of the ACM Con-

ference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), Sept. 1988, pp. 36-45.

Takahashi, S., S. Matsuoka, A. Yonezawa, and T. Kamada, “A General
Framework for Bi-Directional Translation between Abstract and Picto-

rial Data,” in Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST), Nov. 1991, pp. 165-174.

Takahashi, S., K. Miyashita, S. Matsuoka, and A. Yonezawa, “A Frame-
work for Constructing Animations via Declarative Mapping Rules,” in

Proceedings of the IEEE Symposium on Visual Languages (VL), Oct.
1994, pp. 314-322.

Tonouchi, T., K. Nakayama, S. Matsuoka, and S. Kawai, “Creating
Visual Objects by Direct Manipulation,” in Proceedings of the IEEE
Workshop on Visual Languages, 1992, pp. 95-101.

Tsang, E., Foundations of Constraint Satisfaction. London: Academic
Press, 1993.

Vander Zanden, B., “An Incremental Algorithm for Satisfying Hierar-
chies of Multi-Way Dataflow Constraints,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 18, no. 1, Jan. 1996, pp. 30-72.

Vander Zanden, B., G. A. Myers, D. Giuse, and P. Szekely, “The Impor-
tance of Pointer Variables in Constraint Models,” in Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST),
Nov. 1991, pp. 155-164.

© 1997 Hiroshi HOSOBE

BIBLIOGRAPHY 114

[88]

Vander Zanden, B. T., “Incremental Constraint Satisfaction and Its Ap-
plication to Graphical Interfaces,” Tech. Rep. TR 88-941, Department
of Computer, Science, Cornell University, Oct. 1988.

Wilk, M. R., “Equate: An Object-Oriented Constraint Solver,” in Pro-
ceedings of the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), 1991, pp. 286—298.

Wilson, M., “Hierarchical Constraint Logic Programming (Ph.D. Dis-
sertation),” Tech. Rep. 93-05-01, Dept. of Computer Science and Engi-
neering, University of Washington, May 1993.

Wilson, M. and A. Borning, “Extending Hierarchical Constraint Logic
Programming: Nonmonotonicity and Inter-Hierarchy Comparison,” in
Proceedings of the North American Conference on Logic Programming,
1989.

Wilson, M. and A. Borning, “Hierarchical Constraint Logic Program-
ming,” Tech. Rep. 93-01-02a, Dept. of Computer Science and Engineer-
ing, University of Washington, Jan. 1993.

Wilson, M. and A. Borning, “Hierarchical Constraint Logic Program-
ming,” Journal of Logic Programming, vol. 16, no. 3/4, July/Aug. 1993,
pp- 277-319.

Wolf, A., “Transforming Ordered Constraint Hierarchies into Ordi-
nary Constraint Systems,” in Over-Constrained Systems (M. Jampel,
E. Freuder, , and M. Maher, eds.), vol. 1106 of Lecture Notes in Com-
puter Science, Springer-Verlag, Aug. 1996, pp. 171-187.

© 1997 Hiroshi HOSOBE

