Toward a New Constraint Imperative Programming
Language for Interactive Graphics

(Position Paper)

Hiroshi Hosobe

Hosei University

hosobe@acm.org

Abstract

To construct interactive graphics such as graphical user interfaces
and interactive webpages is an important matter in computer pro-
gramming. For this purpose, imperative programming usually has
been used. On the other hand, researchers have been attempting
to apply constraint programming to interactive graphics. Further-
more, the paradigm of constraint imperative programming has been
proposed. This position paper reports our ongoing work on P5CP,
a new constraint imperative programming language for interactive
graphics. To integrate imperative and constraint programming, we
adopt the notion of events in imperative programming and the no-
tion of guards in concurrent constraint programming. We show a
simple example program in this language.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Constraint and logic lan-
guages

Keywords Constraint imperative programming, Programming
languages, Interactive graphics

1. Introduction

To construct interactive graphics such as graphical user interfaces
and interactive webpages is an important matter in computer pro-
gramming. For this purpose, imperative programming usually has
been used, and imperative programming languages such as C++,
Java, and JavaScript are usually employed.

On the other hand, researchers have been attempting to apply
constraint programming to interactive graphics (Borning and Duis-
berg 1986). Constraints are used to denote, for example, the main-
tenance of consistency between internal data and their graphical
representations, the specification of graphical layouts on screens,
and the specification of dynamic behaviors for animations. Further-
more, the paradigm of constraint imperative programming (Felgen-
treff et al. 2014; Freeman-Benson and Borning 1992), which inte-
grates imperative and constraint programming, has been proposed,
although it is not yet popular.

This position paper reports our ongoing work on PSCP, a new
constraint imperative programming language for interactive graph-

ics. To integrate imperative and constraint programming, we adopt
the notions of events and guards. Events are widely used in im-
perative programming to trigger and handle dynamic behaviors in
interactive graphics. Guards are used in concurrent constraint pro-
gramming (Gupta et al. 1998; Ueda et al. 2012) to describe con-
ditions for adopting constraints. We also show a simple example
program in this language.

2. Our Language

The P5SCP programming language that we propose adds constraint
programming to the combination of the JavaScript language and
the pS.js (McCarthy 2014) library. Since JavaScript is an impera-
tive programming language, PSCP can be regarded as a constraint
imperative programming language.

In P5CP, one program mixes constraint program (CP) parts and
imperative program (IP) parts, but these parts exist in such a way
that they can be clearly distinguished. The execution of a program
is done by alternately performing CP phases for processing CP
parts and IP phases for processing IP parts. The basic computation
mechanisms are guards in CP phases and events in IP phases.

States of CP and IP parts are held by CP and IP variables
respectively. CP and IP parts can read values of both CP and IP
variables. However, CP and IP phases can change values of CP and
IP variables respectively. CP and IP variables are distinguished by
their names; names that begin with a dollar sign such as $x and
$foo are CP variables, and others are IP variables.

In P5CP, IP parts form the main body of a program, in which CP
parts are embedded. When CP parts appear during the execution
of IP phases, the creation and initialization of CP variables or the
creation of constraints (possibly with guards) are performed.

CP parts follow the paradigm of hybrid concurrent constraint
programming, which was developed for hybrid systems and is
known for languages such as Hybrid cc (Gupta et al. 1998) and
HydLa (Ueda et al. 2012). In PSCP, CP parts consist of CP variable
declaration sentences and always sentences. A CP variable decla-
ration sentence creates and initializes a CP variable. Syntactically,
it is the same as a property declaration sentence using an equality
sign in standard JavaScript, except that the variable name begins
with a dollar sign. Specifically, CP variables can be declared by de-
scribing “$x = 1;” for a new variable $x in a global environment
or by describing “this.$foo = 100;” for a new variable $foo in
the constructor of an object.

An always sentence creates a constraint that should hold after
the initialization of a CP variable. In this sentence, a constraint with
a guard, or a guarded constraint, can be described; the constraint is
adopted only when the guard holds. A guarded constraint uses the
same syntax as an if sentence in JavaScript, describing a guard
in the conditional part and one or more constraints (that also can

This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published
in MODULARITY Companion 2016, http://dx.doi.org/10.1145/2892664.2892668.

be guarded) in the then clause. In addition, this sentence can have
its else clause. A guard is described as a JavaScript conditional
expression without side effects. A constraint can be described as
a one-way or an ordinary differential equation (ODE) constraint.'
For example, a guarded ODE constraint “if ($x > 0) { $x’
== -1; }” means that $x is decreased as long as $x is positive.>

IP parts are similar to JavaScript programs, except that they can
include CP variables and read their values. They can include event
handlers that are called when events occur.

3. Example

One of application areas of PSCP is physical simulation as with Hy-
brid cc and HydLa because it supports ODE constraints. Especially,
P5CP has the advantage of making a simulation intuitive because
it is able to visualize the simulation by using the functionality of
pS.js.

Figure 1 shows an example program in PSCP and its screen.
This is based on an example of HydLa (Ueda et al. 2012) that
performs a simulation of a ball bouncing on a ground; it is rewritten
to fit to PSCP and also to perform the drawing of the ball and the
ground on a screen.’

In the program of Figure 1(a), lines 1-2 and 12-19 are IP,
and lines 3-11 are CP. It includes only one CP variable $y for
expressing the height of the ball, which is created and is initialized
to 10 by the CP variable declaration sentence in line 3. In lines
4-11 is an always sentence. This includes an if sentence (lines
5-10), and creates an ODE constraint $y°’ == -G (line 6) with a
guard $y > O (line 5) and two one-way constraints $y = 0 (line 8)
and $y’ = -E * pre $y’ (line 9) with the negation of $y > 0 as
a guard. Intuitively, when $y > 0 holds, $y’’ == -G is adopted,
and hence the ball is accelerated by gravity. On the other hand,
when $y > 0 does not hold, $y = 0 and $y’ = -E * pre $y’
are adopted, then the height of the ball is set to 0, and its velocity is
changed from the downward to the upward.*

Lines 12-14 define a setup function, and lines 15-19 defines a
draw function. As event handlers in p5.js, setup is called once to
perform initialization right after the invocation of the program, and
draw is repeatedly called to draw the screen every 1/60 seconds by
default. In this program, setup determines the size of the screen
(line 13), and draw clears the screen with a background color (line
16), draws the ground (line 17), and draws the ball (line 18). To
draw the ball, it reads the value of the CP variable $y.

4. Status and Future Work

The implementation of the PSCP language is ongoing. It is a trans-
lator of a PSCP program to a JavaScript program. It uses a con-
straint solver for executing CP phases that is newly developed in
JavaScript. It also uses p35.js to execute IP phases.

Our future work includes the extension of the language to en-
able various interactive graphical applications. Especially, it is nec-
essary to support the dynamic creation of constraints, the explicit
deletion of constraints, and the declaration of constraints for a dy-
namically determined number of CP variables by using a collection.

'n theory, constraints in always sentences could be multi-way or arith-
metic constraints although such constraints would require a more powerful
constraint solver.

2 The ODE constraint $x> == -1 implies the differentiability of $x for the
associated condition; conversely, $x is nondifferentiable when $x is 0.

3 The implementation of PSCP is not yet sufficient for executing this pro-
gram.

4 Semantically, the pre $y’ indicates the limiting value of $y’ when $y is

infinitesimally greater than 0. However, since our solver uses an approxi-
mate finite-step algorithm, it is not able to compute such a limiting value.

1 const G = 9.8; // gravity acceleration

2 const E = 0.5; // restitution coefficient

3 $y = 10; // height of a ball (CP variable)
4 always {

5 if ($y > 0) { // guard

6 $y’’ == -G; // ODE constraint

7 } else {

8 $y = 0; // one-way constraint
9 $y> = -E * pre $y’; // one-way constraint
10 }

11 3}

12 function setup() {

13 createCanvas (500, 500) ;

14 3}

15 function draw() {

16 background(128) ;
17 line(0, 450, 499, 450); // ground
18 ellipse(250, 450 - 40 * $y, 10, 10); // ball
19 }

(a)

(b)

Figure 1. A ball bouncing on a ground: (a) its program and (b)
screen.

Also, it is necessary to show more useful examples especially in the
area of hybrid systems including the ones that were treated by dif-
ferent approaches (e.g. (Bourke and Pouzet 2013)) other than hy-
brid concurrent constraint programming. Another future direction
is to compare our approach with functional reactive programming
for ODEs and events (Elliott and Hudak 1997).

Acknowledgments

This work is supported by JSPS KAKENHI Grant Number
25540029.

References

A. Borning and R. Duisberg. Constraint-based tools for building user
interfaces. ACM Trans. Gr., 5(4):345-374, 1986.

T. Bourke and M. Pouzet. Zélus: A synchronous language with ODEs. In
Proc. HSCC, pages 113-118, ACM, 2013.

C. Elliott and P. Hudak. Functional reactive animation. In Proc. ACM
ICFP, pages 263-273, 1997.

T. Felgentreff, A. Borning, and R. Hirschfeld. Babelsberg: Specifying and
solving constraints on object behavior. J. Object Tech., 13(4):1:1-38,
2014.

B. Freeman-Benson and A. Borning. The design and implementation of
Kaleidoscope’90, a constraint imperative programming language. In
Proc. ACM ICCL, pages 174-180, 1992.

V. Gupta, R. Jagadeesan, and V. Saraswat. Computing with continuous
change. Sci. Comput. Program., 30(1-2):3-49, 1998.

L. McCarthy. P5.js overview, 2014. https://github.com/processing/p5.js/
wiki/p5.js-overview .

K. Ueda, S. Matsumoto, A. Takeguchi, H. Hosobe, and D. Ishii. HydLa: A

high-level language for hybrid systems. In Proc. Workshop on Logics
for System Analysis (LfSA), pages 3—17, 2012.

This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published
in MODULARITY Companion 2016, http://dx.doi.org/10.1145/2892664.2892668.

