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Abstract. ‘Constraint hierarchy’ is a nonmonotonic system that allows
programmers to describe over-constrained real-world problems by speci-
fying constraints with hierarchical preferences, and has been applied to
various areas. An important aspect of constraint hierarchies is the exis-
tence of efficient satisfaction algorithms based on local propagation. How-
ever, past local-propagation algorithms have been limited to multi-way
equality constraints. We overcome this by reformulating constraint hier-
archies with a more strict definition, and proposing generalized local prop-
agation as a theoretical framework for studying constraint hierarchies
and local propagation. Then, we show that global semi-monotonicity in
satisfying hierarchies turns out to be a practically useful property in
generalized local propagation. Finally, we discuss the relevance of gener-
alized local propagation with our previous DETAIL algorithm for solving
hierarchies of multi-way equality constraints.

Keywords: constraint hierarchies, nonmonotonicity, local propagation, multi-way con-
straints.

1 Introduction

Constraint hierarchies allow programmers to describe over-constrained real-
world problems by specifying constraints with hierarchical strengths or pref-
erences [1, 2], and have been applied to various research areas such as constraint
logic programming [11, 13], constraint imperative programming [3], and graph-
ical user interfaces [8, 9]. Intuitively, in a constraint hierarchy, the stronger a
constraint is, the more it influences the solutions of the hierarchy. For example,
the hierarchy of the constraints strong x = 0 and weak = = 1 yields the solution
x « 0. This property enables programmers to specify preferential or default con-
straints that may be used in case the set of required or non-default constraints
are under-constrained. Moreover, constraint hierarchies are general enough to
handle powerful constraint systems such as arithmetic equations and inequali-
ties over reals. Additionally, they allow ‘relaxing’ of constraints with the same
strength by applying, e.g., the least-squares method.
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Theoretically, the key property of constraint hierarchies is nonmonotonicity.
That is, addition of a new constraint to an existing hierarchy may change the
set of solutions completely,® while in ordinary monotonic constraint systems,
it would either preserve or reduce the solution set. For instance, if we add the
constraint strong x = 0 to the hierarchy of weak z = 1, the solution will change
from x « 1 into x « 0. Clearly, this nonmonotonic property gives us the power
to specify default constraints.

An important aspect of constraint hierarchies as a nonmonotonic system is
that there are efficient satisfaction algorithms proposed. We can categorize them
into the following two approaches:

The refining method first satisfies the strongest level, and then, weaker levels
successively. It is employed in the DeltaStar algorithm [11] and a hierarchical
constraint logic programming language CHAL [10].

Local propagation gradually solves hierarchies by repeatedly selecting
uniquely satisfiable constraints. It is mainly used in constraint solvers for
graphical user interfaces such as DeltaBlue [4], SkyBlue [9], and DETAIL [6].

First, to illustrate the refining method, suppose we have a hierarchy consist-
ing of required x =y, strong y = z + 1, medium z = 0, and weak z = 1. This is
solved as follows: first, by satisfying the strongest constraint required x = y, the
method reduces the set @ of all variable assignments (mappings from variables
to their values) to {8 € @ | 8(x) = 6(y)}; second, by fulfilling the next strongest
one strong y = z + 1, we obtain {8 € © | 8(z) = 6(y) A 0(y) = 6(z) + 1}; third,
evaluating medium z = 0 yields {§ € @ | 8(z) = 1 A 8(y) = 1 A 6(z) = 0}; now,
the weakest constraint weak z = 1 conflicts with the assignments that have been
generated from the stronger constraints, and therefore, remains unsatisfied. As
shown in this example, the refining method is a ‘straightforward’ algorithm for
solving constraint hierarchies.

Next, to demonstrate local propagation, reconsider the hierarchy in the last
example. Local propagation handles it as follows: first, since medium z = 0 can
be uniquely solved, it acquires {# € @ | §(z) = 0}; next, since the instantiation
of z makes strong y = z + 1 uniquely satisfiable, it produces {8 € @ | §(y) =
1 A 6(z) = 0}; finally, computing required z =y, it outputs {§ € @ | §(z) =
1A0(y) =1A6(z) =0}. Note it must reject the weakest constraint weak z =1
at the beginning; otherwise, it would yield an incorrect or empty solution. As
suggested with this example, local-propagation algorithms must plan in what
order they will choose and solve constraints, discarding the ones that lead to
incorrect solutions.

Local propagation takes advantage of the potential locality of typical (pos-
sibly, non-hierarchical) constraint networks in graphical user interfaces. Basi-
cally, it is efficient because it uniquely solves a single constraint in each step.
In addition, when a variable value is repeatedly updated by an operation such

® Wilson and Borning refer to the property, in a less familiar word, as ‘disorderly’ [12].
Instead, they use nonmonotonicity for another concept in hierarchical constraint
logic programming.
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as dragging in interactive interfaces, it can easily re-evaluate only the necessary
constraints. However, local propagation has been restricted to multi-way equality
constraints which can be uniquely solved for each variable, e.g. linear equations
over reals. Also, it cannot find multiple solutions for a given constraint hierarchy
due to the uniqueness.

Naturally, a question arises whether we can ‘generalize’ local propagation to
solve hierarchies of more powerful constraints without losing its efficiency. In
this research, we first reformulate the constraint hierarchy theory, and then in-
troduce a property of constraint systems called global semi-monotonicity, which
is weaker than monotonicity but not disordered nonmonotonicity. Next, we pro-
pose generalized local propagation, a theoretical framework for investigating local
propagation on constraint hierarchies, and show that global semi-monotonicity
exhibits a practically useful property in generalized local propagation. Finally,
to illustrate the utilization of GLP, we relate it with our previous DETAIL al-
gorithm for multi-way equality constraints that can be simultaneously solved or
properly relaxed [6].

2 Related Work

This section briefly overviews previous researches on nonmonotonic constraint
systems from the viewpoint of local propagation.

Borning et al., the originators of constraint hierarchies [1], studied properties
of hierarchies [2, 12], and also developed local-propagation algorithms called
DeltaBlue [4] and SkyBlue [9]. However, their research on theoretical properties
did not cover local propagation on constraint hierarchies, but rather mainly
focused on hierarchical constraint logic programming (HCLP) [11, 12, 13].

Jampel constructed a certain HCLP instance that separates the HCLP
scheme into compositional and non-compositional parts [7]. The method is ex-
pected to improve the efficiency of interpreters and compilers since the compo-
sitional part is efficiently implementable. However, it is unclear whether such a
method is applicable to local propagation.

Freuder and Wallace proposed partial constraint satisfaction for handling
constraint satisfaction problems that are impossible or impractical to solve [5].
Theoretically, it is general enough to simulate constraint hierarchies. However,
the presented algorithms were ones searching for approximate solutions by ‘weak-
ening’ problems over finite domains.

3 Generalized Local Propagation

In this section, we first reformulate constraint hierarchies, and then introduce
global semi-monotonicity of constraint hierarchies. Next, we generalize local
propagation on constraint hierarchies, and study its properties for obtaining
correct solutions.
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3.1 A Reformulation of Constraint Hierarchies

Before generalizing local propagation, we modify the original formulation of
constraint hierarchies in [2] so that it will allow us to better investigate local
propagation. Intuitively, the main changes are to explicitly parameterize tar-
get hierarchies, and to replace concrete embedded functions/relations with ab-
stract ones satisfying reasonable conditions. First, we define basic terms and
symbols. Let X be the set of all variables, D the domain of the variables, and
C the set of all constraints.* Given a constraint ¢, X(c) denotes the set of
all the variables constrained by ¢, and given a set C' of constraints, we define
X(C)y={r e X |3eceC.x € X(c)}. A strength of a constraint is an integer I
such that 0 <1 < w, where w is some positive integer. Intuitively, the larger the
integer is, the weaker the strength is. Let L be the set of all the strengths. A con-
straint ¢ with a strength [ is represented by ¢/l. A constraint hierarchy is a finite
set H of constraints with strengths, and H expresses the set of all constraint
hierarchies. For brevity, we write a variable as z, a constraint as ¢, a strength
as [, and a constraint hierarchy as H, possibly with primes or subscripts.

To represent solutions to constraint hierarchies, we use variable assignments.
A variable assignment, denoted as 6, is a mapping from X to D, and @ indicates
the set of all variable assignments. Given a set X of variables, we define 6(X) =
0'(X) as Vo € X.0(x) =0'(x).

To assign semantics to constraints, we first introduce error functions in the
same manner as the original formalization of constraint hierarchies [2]:

Definition 1 (error function). An error function for / is a mapping ¢; : C x
© — {0} U R such that for any ¢, §, and ', 8(X(c)) = 6'(X(c)) = ei(c,0) =
ei(c,8').

Intuitively, e;(c, ) indicates the error of ¢/l under #, which is zero if ¢/l is
exactly satisfied, and positive otherwise. The condition requires that errors of
a constraint under two variable assignments are equal if the assignments have

equal values for each constrained variable.
Next, we introduce level comparators:

Definition 2 (level comparator). A level comparator for { is a ternary rela-

Jl
tion <: H x @ x @ such that for any H, H', 6, §', and 6" °

VcGC.(c/lGH@c/lGH')i(H<9'<:>9H;/l9) (1)
Ve/l € H.ei(c,8) = erc,8") = (8 < o ool g (2)
Ve/l € Hoer(e,0) = (e, 8") = (0 2 0 0 < o) (3)
Ve/l € Hoel(e,8) < el(e,8) =0 < @ (4)

* We simply define variables and constraints as elements in the corresponding sets,
and separately provide their semantics using certain functions and relations.

5 When we write Vc/l € H, we mean that the universal quantifier V is associated only
with ¢. In other words, [ is either free or quantified by another preceding one.
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H/l H/l H/l

0 < 9nNg <0"=0<9" (5)
H/l H'Jl HUH']l

0 <0ne <6 =60 < 0. (6)

HJl
Intuitively, # < 6’ means “6 is better than or similar to 8" according to | of H.”

Conditions (1)—(3) say that the scope of a level comparator is restricted to be
inside a designated level. Condition (4) indicates that if errors of all constraints
at a level under an assignment are smaller than or equal to those under another
assignment, then the former assignment is better than or similar to the latter
according to the level. Condition (5) is ‘transitivity’ of a level comparator. Condi-
tion (6) means that if, in two hierarchies, an assignment is better than or similar
to another according to the level, then the relation holds in the combination of

the hierarchies.
-/l 1 -/l
For convenience, we define > (worse than or similar to), L (similar to), <

]l -/l H/l
(better than), > (worse than), and # (incomparable with) as follows: § >

HJl HJl HJl HJl HJl
0ot <00 o e long oo o0 on0e

H/l H/1 H/l H/1 H/IL H/1
0> 0c0>0n-010.0L0c-0<0r-020.

The original definition of level comparators is quite different from Definition 2

/1 -/l 1
in the following ways: it separates < into < and L, and defines them construc-

tively; it includes (1)—(3) operationally; it seems to implicitly assume (4); it does
Jl
not require the transitivity of £ unlike (5); it presents no condition like (6). The-

1
oretically, the greatest difference is the lack of the transitivity of L, which we
will discuss later in Subsect. 3.4.
A useful example of a level comparator is the least-squares level comparator,

HJ1

defined as 6 S/ 0' & X eme(e,0)’ <3, cpelc,0')?. Here, two variable as-
signments are compared by summing squares of errors of constraints at the level.
It is easy to prove that the definition fulfills the conditions for level compara-
tors. Used in satisfaction of constraint hierarchies, it works as the least-squares
method within level [.

Next, we define constraint-hierarcy comparators that totally compare hier-
archies by combining level comparators:

Definition 3 (constraint-hierarcy comparator). A constraint-hierarcy com-
parator is a ternary relation <: H x ® x @ such that for any H, 6, and 6',

4 H/l
00 cqenvent<i=o™ gyneL e

H
Intuitively, § < ' means “f is better than §' according to H.” It is defined as
lexicographic ordering with level comparators as its components. Consequently,
the result of a level comparator has absolute priority over those of weaker ones.

For convenience, we define > (worse than), ~ (similar to), < (better than or

similar to), > (worse than or similar to), and £ (incomparable with) as follows:
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H H H/l H H
08>0 o0 <0020 eoviero™o0<9co<ovely,
H H H H H H
0>20<0>0Vve~0;,040 -0<0AN-0>0".
The following definition describes the satisfaction of constraint hierarchies
using a constraint-hierarcy comparator:

Definition 4 (constraint-hierarcy satisfier). A constraint-hierarcy satisfier
H
is a mapping S : 2€ x H — 2° defined as S(O,H) ={# € © | ~30' € 6.6' < §}.

As a shorthand, we write S(H) instead of S(@, H). Intuitively, S(©, H) is the set
of assignments obtained by nonmonotonically satisfying H in ©. By definition, an
assignment in S(©, H) is an element in © such that there is no better assignment
in ® when compared according to H.

Finally, we define solutions of constraint hierarchies:

Definition 5 (solution). A solution to H is a variable assignment in S(H).

In other words, a solution to H is an assignment found by nonmonotonically
satisfying H in the set of all assignments.

One difference between the original and our formulations in defining con-
straint-hierarcy comparators is that the original restricts top-level constraints
to be required, whereas ours allows conflicting constraints at the top level. This
is because our definition of hierarchy satisfiers excludes the special treatment of
the top level. However, the resulting solutions are the same so far as the top
level is not over-constrained. Also, even if we add the condition for the top level
to be required, we can easily accommodate it in our following proofs.

3.2 Global Semi-Monotonicity

We define a useful property called global semi-monotonicity (GSM) in satisfying
constraint hierarchies as follows:

Definition 6 (global semi-monotonicity). S is globally semi-monotonic iff
for any H and H', S(H)N S(H') C S(HUH").

GSM requires that any common solution to two constraint hierarchies is also a
solution to their combination. It is not only natural but also weak (or general)
in a sense that the condition is true for any two hierarchies sharing no solutions.

GSM, by definition, is not limited to constraint hierarchies. In a similar
style, we can express basic properties of constraint systems. For example, we
can represent ordinary monotonicity as S(H)N S(H') = S(H U H'), where the
difference from GSM is that it has S(H)NS(H') O S(H U H'). Thus, we can see
that GSM lacks the familiar style of the monotonic property, S(H) O S(H U H').
(Such a universal style of formal properties is helpful in comparing different
nonmonotonic systems.)

We present a useful class of GSM constraint-hierarcy satisfiers called global
constraint-hierarcy satisfiers, using global level comparators and global con-
straint-hierarcy comparators:
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./l
Definition 7 (global level comparator). A level comparator < is global iff

for any H, H', 6, and 6', B

HUH'/l
6 /a'AeH”a' o "2y (7)
PR B L (8)

H/l H' /1 HUH' /L
-0 < PA-0 <0 =>-0 < 6. (9)

Definition 8 (global constraint-hierarcy comparator). A constraint-hier-
arcy comparator is global iff each level comparator is global.

Definition 9 (global constraint-hierarcy satisfier). A constraint-hierarcy
satisfier is global iff its constraint-hierarcy comparator is global.

An example of global level comparators is the least-squares level comparator.
Most level comparators presented in the original formulation are also global.
The following theorem proves that global satisfiers are GSM:

Theorem 10. S is GSM if S is global.

Proof. By contradiction: Assume that there exists a 6 that isin S(H) and S(H'),
HUH'
but not in S(H U H'). Then, for some &', ¢’ Lé # holds, that is, for some I,

" HUH’l Vg
et <i=0 ™" o ™ g By (7) and (8), & 27" g implies
HU H' /U

/ H/l ,H/l' IH'/l'
(8 < 6A0 > v "~ A0 v > 6n0 < 6),and by (9),
HUH /1 HJl H' /1
' f implies 8/ < 6 v 8 < 6. Hence, it must be either of the following

two cases:
Case ' e LU <IANM" e LI" <l = ¢ A
H
Then, 8’ < 6 holds, which is a contradiction to # € S(H).
H/l” H’/l” , H’/l’
Case ' e LU <IAMNM" e LI" <l'=60 "~ A0 "~ A0 < 6.

Hl
Then, 8’ < 6 holds, which is a contradiction to § € S(H'). O

H/l// H//l// H/l’

YN

The converse, that GSM satisfiers are global, is not true; in fact, we have not
found weaker conditions for level comparators that yield a set equivalent to
GSM. However, we believe that most useful GSM satisfiers are global.’®

% Actually, we could make the converse true if we strengthened the formulation of con-
straint hierarchies by allowing only ‘modular’ hierarchy comparators as follows: let
level comparators be in a certain set including the least-squares level comparator,
and also let hierarchy comparators need to be arbitrarily composed of level com-
parators in the set. For modular hierarchy comparators, the truth of the converse is
easily provable since we can create a non-GSM satisfier by combining any non-global
and the least-squares level comparators. Another set of level comparators without
the least-squares level comparator may exist, but is unlikely to be more useful.
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Global hierarchy comparators might seem strongly related to globally-better
comparators in the original formulation, but in fact, they are different. A
globally-better comparator is a hierarchy comparator composed of level com-
parators that compare reals generated by combining errors of constraints. One
instance, least-squares-better, is composed of the least-squares level comparators,
and therefore, is global. However, worst-case-better, composed of the worst-case

HJl
level comparators defined as § < 6" & max. g ei(c,0) < max. ey ec,0'),is
not global because (7) does not hold. Generally, for level comparators of globally-
HJl
better comparators, (8) is true since they compare reals, i.e. =6 # §'. However,
it depends on actual instances of level comparators whether both (7) and (9)

hold.

3.3 Generalized Local Propagation

Classical local propagation satisfies a constraint network by successively solving
individual constraints in an order closely associated with the network topology.
Here we generalize local propagation so that it can solve a set of constraints
in one step and can also introduce an arbitrary order among such constraint
sets. For this purpose, we introduce ordered partitions as follows: a partition
of a constraint hierarchy is a set generated by decomposing the hierarchy into
disjoint subsets called blocks; given a partition P, an ordered partition of P is
a pair (P, <p), where <p is an arbitrary partial order among blocks in P. For
brevity, we write B <p B’ instead of B<p B'AB # B'.

Using ordered partitions into blocks, we define generalized local propagation
(GLP) in the following way:

Definition 11 (generalized local propagation). Generalized local propaga-
tion with S is a mapping ws({P, <p)) defined as follows:

e it |P|=0
ms({P,<p)) = ﬂ S(wg(before({(P,<p), B)), B) otherwise ,
Beterminals({P,<p}))

where terminals and before are as follows:

terminals((P,<p))={B' € P| -3 B" € P.B'<p B"}

I __ ! !

before({F: <p). B) = (P, <p) { si = ?(BB’,GBZT’J ep JB;’}| B'<p B"} .

Intuitively, terminals({P, <p)) is the set of all blocks at terminal positions, and
before({P,<p), B) is the ‘ordered sub-partition’ of (P, <p), where all blocks are
before B. For example, consider the ordered partition (P, <p) of the blocks By,
Bs, ..., By, as illustrated in Fig. 1. The partial order <p is defined as the re-
flexive transitive closure of all the arrows in Fig. 1. Then, terminals({P, <p))
is the set {Bs, Bg}. Also, before({P,<p),Bg) is the pair consisting of the set
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\\\\\' e : "

R — termjnéfé((P, <p))

before({P, <p), Bo)

Fig. 1. An ordered partition

{Bi, By, B4, B3, B7} and the partial order defined as the reflexive transitive clo-
sure of the black arrows. Thus, By is satisfied in the set of assignments obtained
by applying GLP to blocks before By. Accordingly, we can view GLP as a pro-
cess that successively solves each blocks in some order respecting <p. This is
always possible because <p is a partial order.

The next lemma shows that by using a global satisfier, GLP respects the sim-
ilarity of variable assignments for ordered partitions that satisfy the conditions
below:

Lemma 12. Let S be global. Given an arbitrary H, (P,<p) of H, and 6
in ms({P,<p)), then any 8" is in wg({P,<p)) if ' 29 and

VB € P.¥c/l € B.e|(¢,0) >0=VB' € P.B'<p B=Vd/l' e B'.l' <l . (10)

Proof. By contradiction: Assume that there exists some 6’ which is not
in 7s({(P,<p)). Then, it is necessary that for some B; in P, ' is
in wg(before({P,<p), B1)), but not in S(wg(before({P,<p), B1)), B1). Because

B B
9" X 9 holds and S is global, 6 761 ¢' does not hold. Therefore, § < 6

must hold, that is, there exists some [; such that (VI € L.l <l = 6 Bt

Bi/l e . B/l .
0"YANE < @' This implies that for some B in P, # > 6 holds. Since § must

be in S(wg(before({P,<p), B)), B), it must be either of the following two cases:
Case 0" € wg(before({P,<p),B)) N8 & S(xs(before({P,<p), B)), B). Since

B/l B/l
0 >1 #' holds, there must exist some Il such that {o < {; and 6 <2 9.
Case 0" & wg(before({P,<p), B)). Then, for some B’ in P such that B' <p
B, ' is in wg(before({P,<p), B')), but not in S(wg(before({P,<p),B’)),B’).

B/l
Since § > ¢’ implies 3¢/l; € B.ey(c,0) > 0, and also since (10) holds, B’
contains only stronger constraints than ;. Therefore, there exists some Iy such
B'/l,
that b <l and 8 < 6.
By /1
Beginning with 6 <! 0, both of the two cases resulted in that there exist

By/l
some Iy and By such that Iy < I and 0 2)< e Clearly, it causes an infinite

© Springer-Verlag 1996
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-61551-2_78.



sequence lq,ls,... such that I; > l,;1. However, since each I; is a non-negative
integer, it is a contradiction. a

Intuitively, Lemma 12 says that if GLP using a global satisfier generates a vari-
able assignment under which constraints with errors have only stronger con-

straints before them, then it yields all similar (i.e. E) assignments. Note that
the sufficient condition (10) allows constraints without errors to be placed after
weaker ones.

In the following theorem, we prove that such variable assignments are solu-
tions to the constraint hierarchy:

Theorem 13. Let S be global. Given an arbitrary H, (P,<p) of H, and 6
ints({(P,<p)), then 8 is a solution to H if (10) holds.

Proof. By induction on the size of P:

Induction base. If |P| = 0, the proposition holds.

Induction step. Assume that if |P| < n, the proposition holds. Now, let |P| =
n. For any B in terminals({P, <p)), 8 must be in S(wg(before((P,<p), B)), B).
Therefore, by the induction hypothesis, 6 is in S(Hp), where Hp is the union
of blocks of before({P,<p), B). Now, we assume (for contradiction) that there

HpUB
exists some #' such that §' < 6, that is, for some I, WMl e LI <1l =

' HpUB/I
g 1B O)NE "< 6. It must be either of the following two cases:

" 1" Hp/l
Case W € LU <INV € L1 <V =0 T2 gng B gy e ™" 6.
H
Then, 8’ < 6 holds. Therefore, 8 ¢ S(Hg), which is a contradiction.

1" 1" B ll
Case W € LU <IAM" € LI" <1 = ¢ "2 gng P17 gy ng %

f. Then, for some ¢/l' in B, e;(c,f) > 0 must hold. By (10), Hp contains

only stronger constraints than I'. Therefore, 6' 2 9 holds. By Lemma 12, ¢’

is also in wg(before({P,<p), B)). However, since ¢’ 2 6 holds, it implies § ¢
S(ws(before({P,<p), B)), B), which is a contradiction.

Both cases caused contradiction. Therefore, there never exists such ¢’ i.e.
is in S(Hp U B). Since S is global, 8 is also in S(H) by Theorem 10. O

The theorem presents a strategy to design algorithms for solving constraint hier-
archies. As noted, the sufficient condition permits constraints without errors to
be located after weaker ones. In other words, we can delay the satisfaction of a
strong constraint with no error until some appropriate time, for example, “when
the constraint becomes uniquely satisfiable.” Actually, Theorem 13 gracefully ex-
plains why the DETAIL algorithm obtains solutions by using local propagation,
which we will describe in Sect. 4.

An important instance of such GLP is the refining method. Since constraints
have no weaker constraints before them in the method, it can be easily under-
stood by Theorem 13 that it generates only correct solutions, i.e. is sound. In
addition, using a certain kind of global satisfiers, the refining method yields all
solutions, i.e. is complete:
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H
Proposition 14. Let S be global such that for any H, 0, and ', -6 £ 6.
For any H and (P,<p) of H, ns({P,<p)) = S(H) if P ={B; |l € L} and
By <p By &1 <1, where By is the level l of H.

By this proposition, a refining-method algorithm using a global hierarchy and
globally-better comparator, e.g. least-squares-better, is sound and complete, be-

H
cause any globally-better comparator satisfies =6 « 6.7
Next, we define local level comparators, local constraint-hierarcy comparators,
and local constraint-hierarcy satisfiers:

i
Definition 15 (local level comparator). A level comparator < is local iff for
H/l
any H, 0, and ¢, (11) 8 < 8" = Ve[l € H.e(c,0) < efc,8").

Definition 16 (local constraint-hierarcy comparator). A constraint-hier-
arcy comparator is local iff each level comparator is local.

Definition 17 (local constraint-hierarcy satisfier). A constraint-hierarcy
satisfier is local iff its constraint-hierarcy comparator is local.

H/l

By (4) and (11), alocal level comparator results in 4 S/ 0' & Vefl € H.ec,8) <
ei(c,8"), which is equivalent to level comparators of locally-better comparators
in the original formalization. With additional restrictions on multi-way equality
constraints, we can regard our formulation as a theoretical basis of efficient con-
straint-hierarcy satisfaction algorithms such as DeltaBlue.

The following proposition indicates a critical difference between global hier-
archy and globally-better comparators:

Proposition 18. Any local constraint-hierarcy comparator is global.

The original formulation presented locally-better and globally-better as separate
concepts. However, we successfully integrated locally-better and an important
class of globally-better into global hierarchy comparators via GSM.

Using a local satisfier, we can obtain a theorem with a weaker sufficient
condition than that of Theorem 13:

Theorem 19. Let S be local. Given an arbitrary H, (P,<p) of H, and 6
in ms((P,<p)), then 8 is a solution to H if

VB € P.Vc/l € B.e)(c,0) >0=VB' € P.B' <p B=VJ/l' e B.I' <1 . (12)

The difference of (12) from (10) is the existence of equality in I’ < [, which
indicates that (12) is weaker than (10). Since it will provide more freedom to
organize ordered partitions, we can expect to develop more efficient constraint
solving algorithms using local satisfiers. For example, we can regard the blocked
constraint lemma presented in the DeltaBlue paper [4] as a specialization of
Theorem 19.

7 It is probably possible to weaken the sufficient conditions for level comparators since
the condition for ordered partitions is too strong in the refining method.

© Springer-Verlag 1996
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-61551-2_78.



nonmonotonic
...................................................

globally semi-monotonic

partial constraint satisfaction GS: global satisfier

v LS: local satisfier

GB: globally-better

our constraint hierarchies LB: locally-better

H RB: regionally-better

LSB: least-squares-better
WSB: weighted-sum-better
WCB: worst-case-better

M: monotonic

original constraint hierarchies

Fig. 2. Relationship of nonmonotonic constraint systems

3.4 Discussion

In this subsection, we review the relationship among nonmonotonic constraint
systems, which is roughly illustrated in Fig. 2.

Partial constraint satisfaction [5] is a considerably general theory. Therefore,
it will include various nonmonotonic systems, which are not necessarily efficiently
solvable.

Our reformulation of constraint hierarchies has become narrower than the

. . -/l -
original one,® because we necessitated 4 to be transitive by (5). For example,

HJl
we exclude regionally-better in [11] since its level comparator is defined as 6 </
0 o Vel € H.el(e,8) < ei(e,8') A3e/l € Hoei(e,0) < e(e,6') and 8 L' 6" &

H/l H/l HJL . " :

-0 < 8 A=0 > 6 where =~ is not transitive. However, excluding such level
comparators contributed to theoretical cleanness and development of generalized
local propagation.

It is important to find an expressive and efficiently solvable class of nonmono-
tonic constraint systems. Except regionally-better and worst-case-better, all the
hierarchy comparators presented in the original formulation are global by our
formulation. We believe that this fact supports the expressiveness of our global
satisfiers with respect to constraint hierarchies. Also, we claim that Theorem 13
for global satisfiers and Theorem 19 for local satisfiers are useful in designing
efficient constraint satisfaction algorithms.

4 The DETAIL Algorithm

To show how to employ the results in the last section, we relate them with
the DETAIL algorithm, which we proposed in [6]. DETAIL is an incremental
algorithm for solving constraint hierarchies based on local propagation. It always

8 Strictly speaking, as noted earlier, our theory allows conflicting constraints at the
top level, while the original theory restricts top-level constraints to be required.

© Springer-Verlag 1996
This is the author's version. The final authenticated version is available online at
https://doi.org/10.1007/3-540-61551-2_78.



required A weak B

required weak
t=1 1 t=u

a t b u

[ F—O—a ——-] 1l .

’ &/ L &/ L L L=

weak 1 strong 2 weak 3 strong

v =20 t4v=w w = a v 4y =
weak E medium G

Fig. 3. A configuration of constraint cells

stores planning data instead of an appropriate ordered partition of the current
hierarchy, and modifies the plan if a constraint is added to or removed from the
hierarchy.

DETAIL handles multi-way equality constraints extended so that it can si-
multaneously satisfy or properly relax them, in addition to solving them individ-
ually as is with classical local propagation. To process such constraints, DETAIL
maintains a set of constraint cells instead of an ordered partition into blocks.
A constraint cell can be regarded as a block including output variables, where
the constraints in the block are uniquely solved for the output variables. Also, it
never shares variables with any other cells. For example, to solve the constraint
strong x + y = 3 for variable ©, DETAIL yields a cell of strong z +y = 3 and
z. By contrast, to simultaneously solve strong x +y = 3 and weak z — y = 1, it
generates a cell of the two constraints and the variables x and y. Similarly, to
relax strong x = 0 and strong z = 1, it produces a cell consisting of the two con-
straints and x.° DETAIL solves such constraint cells with pluggable numerical
modules called subsolvers using e.g. Gaussian elimination.

By the definition of constraint cells, we can determine dependency among
cells. Additionally, if we prohibit cyclic dependency, we can naturally identify
the overall dependency among cells with a partial order among blocks. Then,
we can perform GLP in a ‘unique’ manner as is with conventional local propa-
gation. For example, consider the hierarchy with the constraints [a], [b], ..., [h]
in Fig. 3, where the squares and circles represent constraints and variables re-
spectively, and the boxes with round corners indicate cells. Clearly, in the order
respecting the cell dependencies, such as A, B, H, G, and E, we can uniquely
solve constraints in each cell.

The other issue is how to determine configurations of cells that obtain cor-
rect solutions. To guarantee the sufficient condition (10) for Theorem 13, we
employed walkabout strengths, which had been first introduced in DeltaBlue [4].
In DETAIL, walkabout strengths, associated with constraint cells, are defined
to propagate strengths of the weakest constraints. For example, in Fig. 3, the
walkabout strength medium of cell G is inherited from the weakest constraint [h]

9 SkyBlue also realizes simultaneous satisfaction by calling ‘cycle solvers,’ but provides
no features for relaxing constraints [9].
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among all the constraints that the variables in G depend on, i.e. [f], [g], and
[h]. Therefore, the walkabout strength of a cell indicates that there are only
constraints with equal or stronger strengths before/in the cell. Thus, it can be
easily verified whether a configuration of cells satisfies the sufficient condition
for Theorem 13. For example, in Fig. 3, although the weak constraints [c] and [e]
in E have positive errors, the walkabout strengths required and medium of the
preceding cells A and G indicate that all the forward constraints are stronger
than weak.

Now, we demonstrate the DETAIL algorithm by example. Figure 4a illus-
trates the initial configuration of cells, and suppose that we add a new constraint
[b] medium z =7 to it. The current solution z = 3 conflicts with [h], and the
walkabout strength weak of G shows that there is one or more weak constraints
in or before G. Therefore, we must change the configuration in the following
steps:

1. First, move along the path from the new cell to the nearest source of the
walkabout strength, i.e. from H to E, reversing the dependency between
them, as shown in Fig. 4b. Note the multi-way equality property of con-
straints always enables us to perform the reversing operation [6].

2. Next, merge cyclic dependencies generated from the previous step if any. In
the example, we collapse the cycle of G' and F' as illustrated in Fig. 4c.

3. Third, check whether the victimized cell E' has any preceding cells with
the same walkabout strength weak. Figure 4c shows that D is such a cell.
Since it violates the sufficient condition for generating solutions, merge all
the transitively adjacent cells with the same walkabout strength, i.e. E', D,
and C (but not B). Then, we obtain the final configuration in Fig. 4d.

In step 3, we merged all the transitively adjacent cells with the same walk-
about strength to ensure the sufficient condition (10) for global satisfiers. How-
ever, if we use a local satisfier, we only need to guarantee the weaker condi-
tion (12), and therefore, we can omit step 3 (the final configuration would have
been Fig. 4¢). DETAIL also provides the support for local satisfiers, which usu-
ally results in smaller constraint cells that can be solved more efficiently.
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5 Conclusions and Status

We reformulated the definition of constraint hierarchies, and proposed gener-
alized local propagation to theoretically study local propagation therein. We
showed that globally semi-monotonic satisfaction of hierarchies exhibits a prac-
tically useful property for generalized local propagation.

By applying the results, we are extending the DETAIL algorithm to handle
‘multi-way inequality constraints.” We already established its basis, and actually
implemented a prototype constraint solver. Due to the existence of inequalities,
the new algorithm is exponential in time complexity unlike the original DETAIL,
which is polynomial. Therefore, we are mainly exploring performance techniques
such as efficient scheduling and pruning of constraints.
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