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Abstract. This paper proposes an algorithm for satisfying systems of
linear equality and inequality constraints with hierarchical strengths or
preferences. Basically, it is a numerical method that incrementally ob-
tains the LU decompositions of linear constraint systems. To realize this,
it introduces a novel technique for analyzing hierarchical systems of lin-
ear constraints. In addition, it improves performance by adopting tech-
niques that utilize the sparsity and disjointness of constraint systems.
Based on this algorithm, the HiRise constraint solver has been designed
and implemented for the use of constructing interactive graphical user
interfaces. This paper shows that HiRise is scalable up to thousands of
simultaneous constraints in real-time execution.

1 Introduction

Constraints have been widely recognized to be powerful in the construction of
graphical user interfaces (GUIs). The main usage of constraints in GUIs is to
lay out graphical objects. Once a programmer defines the geometric relationship
of objects with constraints, a constraint solver will automatically maintain the
relationship afterward. Therefore, the programmer will be freed from the burden
of writing the code to manage the layout. It is effective especially when the layout
is too complex for the programmer to specify with a simple loop or recursion.
Apart from geometric layouts, constraints can be used, for example, to adjust the
sizes of graphical objects to internal data, and also to manage the relationships
between internal data.

A major subject of the research on constraints for GUIs is how to model
and solve various over-constrained real-world problems. For this purpose, con-
straint hierarchies [3] are often used as a theoretical framework. By definition,
a constraint hierarchy is a constraint system that consists of constraints with
hierarchical strengths , which can be regarded as the preferences or priorities of
the constraints. Intuitively, (optimal) solutions of constraint hierarchies are de-
termined so that they will satisfy as many strong constraints as possible, leaving
weaker inconsistent constraints unsatisfied.

Another issue of the study on constraints for GUIs is how to improve the
scalability of constraint satisfaction. For this purpose, incremental local propa-
gation algorithms have been extensively explored [6, 9, 14, 15]. However, since
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local propagation is basically limited to dataflow (or functional) equality con-
straints, the resulting algorithms inevitably impose restrictions on the kinds of
possible constraint problems. A typical hurdle is to solve arbitrary hierarchies of
linear equality and inequality constraints, although such constraint hierarchies
arise naturally in actual GUI applications.

To address these issues, this paper proposes an algorithm for satisfying hier-
archies of linear equality and inequality constraints. Its main contributions are
summarized as follows:

– By introducing a novel technique called hierarchical independence analysis, it
efficiently realizes the incremental satisfaction of hierarchies of linear equality
constraints based on LU decomposition.

– It provides a way of handling linear inequality constraints in combination
with quasi-linear optimization.

– It presents techniques for improving performance by utilizing the sparsity
and disjointness of constraint hierarchies.

Based on this algorithm, the HiRise1 constraint solver has been designed
and implemented for the use of constructing interactive GUIs. Particularly, it
is fitted to large-scale diagrams defined with numerous constraints. This paper
shows that HiRise is scalable up to thousands of simultaneous constraints in
real-time execution.

2 Related Work

There have been various algorithms proposed for solving constraint hierarchies.
Particularly, in the area of GUIs, local propagation algorithms for dataflow equal-
ity constraints have been extensively studied. DeltaBlue [6] is the first efficient
incremental algorithm in this category. SkyBlue [14], the successor of DeltaBlue,
copes with the multiple outputs and cyclic dependencies of constraints. Quick-
Plan [15] ensures that it can solve a constraint hierarchy by local propagation
if the hierarchy has at least one acyclic solution. The author proposed the DE-
TAIL algorithm [9], which accommodated local propagation to the least-squares
method as well as cyclic dependencies.

For the purpose of GUIs, there have been algorithms that deal with constraint
hierarchies including inequalities in limited ways. Indigo [2] efficiently handles hi-
erarchies with nonlinear inequality constraints by interval propagation, although
it does not cope with the cyclic dependencies of constraints. The algorithm us-
ing projection [7] statically compiles constraint hierarchies with inequalities into
program code.

The recent algorithms for solving constraint hierarchies with inequalities are
Cassowary [1, 4] and QOCA [4, 10]. Both of the algorithms solve hierarchies
of linear constraints by converting them into optimization problems. Cassowary
uses the simplex method to obtain solutions based on the weighted sums of
1 HiRise stands for ‘HieRarchical linear system engine.’
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constraint errors, while QOCA exploits linear complementary pivoting to find
least-squares solutions.2 Later, Section 8 provides further discussions about these
algorithms.

Linear constraint satisfaction has also been studied in the community of
constraint logic programming [13]. Its main issue is how to enhance the incre-
mental satisfaction of ordinary (non-hierarchical) systems of linear equality and
inequality constraints. By contrast, this paper primarily focuses on the incre-
mental maintenance of hierarchical systems of linear constraints.

3 The Basic Algorithm

This section presents the basic algorithm for HiRise to satisfy hierarchical sys-
tems of linear equality constraints.

3.1 Problem Formulation

The basic algorithm focuses on linear equality constraints only. Instead of ordi-
nary constraint hierarchies, it internally treats constraint systems formulated as
follows:

Definition 1 (constraint system). A constraint system is an ordered set of
m linear equations on n variables x1, x2, . . . , xn, where the i-th equation is rep-
resented as ai1x1 + ai2x2 + · · · + ainxn = ci. The coefficient vector of the i-th
equation is ai = (ai1 ai2 · · · ain), and the coefficient matrix A, variable vector
x, and constant vector c of the system are defined as follows:

A =

⎛
⎜⎜⎝

�1

�2

...
�m

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝

x1

x2

...
xm

⎞
⎟⎟⎠ , c =

⎛
⎜⎜⎝

c1

c2

...
cm

⎞
⎟⎟⎠ .

Intuitively, the first equation is the strongest, and the latter an equation, the
weaker it is. The notion of strength is similar to that of constraint hierarchies;
that is, an equation has absolute priority over latter ones in determining solu-
tions, which is strictly defined later.

For simplicity, the rest of this paper writes a constraint system as Ax =
c. Also, for brevity, it obeys the following notation rules: it assumes that the
numbers of constraints and variables are m and n respectively; writing i and
j, it intends indices that range over 1 to m and over 1 to n respectively. It
sometimes attaches primes or subscripts to these symbols.

Solutions of constraint systems are defined using an ordering:
2 Precisely, the QOCA constraint solving toolkit also provides the Cassowary solver to

handle linear inequality constraints [10]. However, for convenience, this paper refers
to the algorithm based on linear complementary pivoting as QOCA.
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Definition 2 (solution). Given a constraint system Ax = c, its solution set is

S(Ax = c) ≡ {v ∈ Rn | ∀v′ ∈ Rn. |Av − c| ≤lex |Av′ − c|}
where ≤lex is the lexicographic ordering, i.e., |Av − c| ≤lex |Av′ − c| is

|Av − c| =lex |Av′ − c| ≡ ∀i. |aiv − ci| = |aiv
′ − ci|

or |Av − c| <lex |Av′ − c| ≡ ∃i. ∀i′ < i. |ai′v − ci′ | = |ai′v
′ − ci′ |

∧ |aiv − ci| < |aiv
′ − ci| .

A solution set S(Ax = c) means that a solution of Ax = c is x1 = v1, x2 = v2,
. . . , xn = vn for v = (v1, v2, . . . , vn)T ∈ S(Ax = c). This paper simply refers to
such a vector v as a solution.

Intuitively, ≤lex ‘hierarchically’ compares two error vectors, and the solution
set of the given constraint system is the set of all the variable value vectors that
result in the minimum error vectors in the sense of ≤lex. Therefore, constraint
systems may be regarded as holding preferential constraints in the total order.

Unlike constraint hierarchies, constraint systems by these definitions have no
levels that contain constraints with equal preferences. However, the author has
proved a theorem [8] that they have a close relationship with constraint hierar-
chies consisting of linear equations and solved with the locally-error-better (LEB,
also known as locally-metric-better) comparator [3]. Informally, LEB determines
the appropriateness of potential solutions based on how much each constraint is
satisfied (see Section 8 for the discussion on comparators). The proved theorem
means that the system obtained by ‘serializing’ (or putting in the total order)
the constraints in each level of a hierarchy will always yield a subset of the LEB
solution set of the original hierarchy. Thus, if all solutions are not necessary,
Definitions 1 and 2 substitute for constraint hierarchies. Such a situation is com-
mon in various applications including GUIs that usually need only one solution.
Therefore, the author believes that the notion of such constraint systems is useful
as an alternative method to handle constraint hierarchies.

3.2 Hierarchical Independence

This subsection presents the notion of hierarchical independence, a foundation
for analyzing hierarchical systems of linear constraints. It is the key technology
for the basic algorithm to achieve efficiency.

A row of a coefficient matrix is said to be hierarchically independent if and
only if it is linearly independent of all the upper (or stronger) ones:

Definition 3 (hierarchical independence). Given a constraint system Ax =
c, the condition that the i-th row of A is hierarchically independent, denoted as
hindep(A, i), is defined as follows:

hindep(A, i) ≡ ¬∃α1∃α2 · · · ∃αi−1. ai = α1a1 + α2a2 + · · ·+ αi−1ai−1 .

Also, a row that is not hierarchically independent is said to be hierarchically
dependent.
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The following theorem shows that solutions of constraint systems can be
obtained by collecting and satisfying all the constraints corresponding to hier-
archically independent rows:

Theorem 4. For any constraint system Ax = c, v is its solution if and only if

∀i. hindep(A, i)⇒ aiv = ci .

Proof. See [8] 	

Conversely, if an equation has a dependent coefficient vector, it exhibits either
inconsistency that must be discarded, or redundancy that may be ignored.

The rest of this paper says, for conciseness, that a constraint is active if
and only if its coefficient vector is hierarchically independent, and refers to non-
active constraints as inactive constraints. Also, for a constraint system Ax =
c, it considers an ordinary linear system Bx = d that contains all the active
constraints of Ax = c in some arbitrary order. Obviously, the solution set of
Ax = c is equal to that of Bx = d. It calls such B and d an active coefficient
matrix and an active constant vector respectively.

3.3 Solving a Constraint System from Scratch

This subsection presents how the basic algorithm solves a constraint system
from scratch. For simplicity, the following description assumes that the given
constraint system has n active constraints; for any system, it can be realized
simply by adding to each variable a very weak default stay constraint that tries
to preserve its current value.

Generally, given a constraint system Ax = c, the basic algorithm obtains an
LU decomposition in the following form:

BT1T2 · · ·Tt = L (1)

where B is an active coefficient matrix, each Tk is a transformation matrix
described later, and L is a lower triangular matrix:

B =

⎛
⎜⎜⎝
�1

�2

...
�n

⎞
⎟⎟⎠ , L =

⎛
⎜⎜⎝

1
l21 1
...

. . .
. . .

ln1 ln2 1

⎞
⎟⎟⎠ .

Intuitively, (1) means that a sequence T1T2 · · ·Tt transforms B into L.
Once the algorithm computes (1), it can solve Bx = d for x efficiently. First,

it resolves Ly = d by computing yj ← dj −
∑j−1

j′=1 ljj′yj′ , which is known as
forward substitution [12]. Then it obtains x by calculating x = T1T2 · · ·Tty.

When the basic algorithm solves Ax = c from scratch, it obtains an LU
decomposition in the form:

BP1U1P2U2 · · ·PnUn = L
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where each Pj and Uj is a permutation matrix and an upper triangular eta
matrix respectively:3

Pj =

⎛
⎜⎜⎝

Ej−1

0 1
Ej′−j−1

1 0
En−j′

⎞
⎟⎟⎠ , Uj =

⎛
⎝Ej−1

1
b′
jj

− b′j,j+1
b′
jj

· · · − b′jn

b′
jj

En−j

⎞
⎠ . (2)

To determine which row to select as bj , the algorithm performs hierarchi-
cal independence analysis: until the j-th step, it has obtained a ‘partial’ LU
decomposition as

⎛
⎜⎜⎝

�1

�2

...
�j−1

⎞
⎟⎟⎠P1U1P2U2 · · ·Pj−1Uj−1 =

⎛
⎜⎜⎝

1
l21 1
...

. . .
. . .

lj−1,1 · · · lj−1,j−2 1 0 · · · 0

⎞
⎟⎟⎠ .

Then it picks up the uppermost unprocessed row ai from A, and multiplies it
by P1U1P2U2 · · · Pj−1Uj−1:

aiP1U1P2U2 · · ·Pj−1Uj−1 = (a′
i1 a′

i2 · · · a′
i,j−1 a′

ij · · · a′
in).

If a′
ij′ is not a zero for some j′ ≥ j, ai is a hierarchically independent row of A;

then the algorithm assigns ai to bj , and determines Pj and Uj with (2). Other-
wise, it moves to the next uppermost unprocessed row since ai is hierarchically
dependent. Intuitively, Pj swaps the j-th column for the j′-th so that the result-
ing (j, j)-entry is not a zero. Then Uj changes the (j, j)-entry into one, and also
‘eliminates’ all the (j, j′′)-entries for j′′ > j.

The algorithm may be easily understood when compared with Gaussian elim-
ination [12]: it transforms a matrix B into a lower triangular matrix L, while
Gaussian elimination transforms a matrix into an upper triangular matrix. Un-
like Gaussian elimination, it records its transformation process as a sequence of
Pj ’s and Uj ’s.

In addition to ordinary linear equality constraints, the algorithm can handle
edit and stay constraints, which usually arise in GUI applications: an edit con-
straint for a variable attempts to change its value, while a stay constraint tries
to fix the value of the designated variable. The algorithm realizes an edit con-
straint by expressing it as x = c and calculating the necessary parts of Ly = d
and x = T1T2 · · ·Tty whenever it tries to alter the value of x. By contrast, the
algorithm implements a stay constraint simply by representing it as x = c where
c indicates the value of x immediately before it becomes active.

The time complexity for constructing an LU decomposition from scratch is
O(mn2). Also, the time complexity for calculating variable values using the LU
decomposition is O(n2).

3 In this paper, Ek represents the k × k identity matrix.
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3.4 Inserting a Constraint Incrementally

When a new constraint is inserted between constraints in the current system,
the basic algorithm takes one of the following actions:
– If it needs to activate the new constraint, it updates the current LU de-

composition. To do this, it first finds an appropriate ‘victim’ constraint that
should be deactivated instead. After eliminating the row for the victim and
appending the row for the new one, it revises the LU decomposition.

– Otherwise, it keeps the present LU decomposition unchanged.

The criterion for activating or deactivating a constraint is its hierarchical inde-
pendence in the new system. The victim is the constraint that has been active
in the previous system but becomes inactive in the new system because of the
stronger, inserted constraint. When a constraint is inserted, there will be at most
one victim because all the constraints are linear equations.

The technique for updating LU decompositions is inspired by Forrest-Tomlin
method [5], which was originally devised for linear programming. The technique
is as follows: assume that the new constraint ax = c should be activated, and
that the row for the victim is found to be the j-th one of the active coefficient
matrix B, which has been decomposed into (1). Let

B′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

�1

...
�j−1

�j+1

...
�n

⎞
⎟⎟⎟⎟⎟⎟⎠

, Qj =

(
Ej−1

1
En−j

)

and then the following holds:

B′T1T2 · · ·TtQj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
...

. . .
lj−1,1 1
lj+1,1 · · · lj+1,j−1 1 lj+1,j

...
...

. . .
...

ln1 · · · ln,j−1 ln,j+1 1 lnj

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, all the entries at the rightmost column can be eliminated with appropriate
matrices U ′

j, U ′
j+1, . . ., U ′

n−1 in the form (2). Then, with U ′
n such that

aT1T2 · · ·TtQjU
′
jU

′
j+1 · · ·U ′

n−1U
′
n = (l1 l2 · · · ln−1 1)

the following new LU decomposition is obtained:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

...
�j−1

�j+1

...
�n

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T1 · · ·TtQjU
′
j · · ·U ′

n−1U
′
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...

. . .
lj−1,1 1
lj+1,1 · · · lj+1,j−1 1

...
...

. . .
ln1 · · · ln,j−1 ln,j+1 1
l1 · · · lj−1 lj ln−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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To judge whether to activate the new constraint and (if necessary) which ac-
tive constraint to victimize, the algorithm carries out hierarchical independence
analysis: it finds the row index j for the first active constraint, in the descending
order of the index (or preference) i of the constraint, such that

aT1T2 · · ·TtQjU
′
jU

′
j+1 · · ·U ′

n−1 = (a′
1 a′

2 · · · a′
n−1 a′

n)

where a′
n 
= 0 and U ′

j , U ′
j+1, . . ., U ′

n−1 are the ones obtained with the above tech-
nique. If such i is no smaller than the index where the new constraint is inserted,
the algorithm needs to revise the LU decomposition, and the i-th constraint is
the victim. Otherwise, it should not change the current decomposition.

The time complexity for inserting a constraint into a system is O(m′n2),
where m′ indicates the number of the constraints tested for a victim. Usually
m′ = 1 holds since the weakest active constraint tends to be the victim.

3.5 Deleting a Constraint Incrementally

When an existing constraint is deleted from the current constraint system, the
basic algorithm applies one of the following processes:

– If the deleted constraint is active in the present LU decomposition, it updates
the decomposition. To do this, it first eliminates the row for the deleted
one by the method described in the previous subsection. Then it detects a
proper alternative constraint that should be activated instead, and updates
the decomposition by attaching the row for the alternative.

– Otherwise, it preserves the current LU decomposition.

To decide which inactive constraint aix = ci to activate alternatively, the
algorithm employs hierarchical independence analysis: assume that j is the row
index in B of the deleted constraint, and that U ′

j , U ′
j+1, . . ., U ′

n−1 are obtained
with the elimination of the j-th row; then it searches for the index (or preference)
i of the first inactive constraint, in the ascending order of i, such that

aiT1T2 · · ·TtQjU
′
jU

′
j+1 · · ·U ′

n−1 = (a′
i1 a′

i2 · · · a′
i,n−1 a′

in)

where a′
in 
= 0. With such an alternative constraint, the algorithm obtains the

new LU decomposition.
The time complexity for deleting a constraint from a system is O(m′n2),

where m′ represents the number of the constraints tried for an alternative. If the
system does not have many conflicting (or possibly redundant) constraints, m′

will be bounded by a small number.

4 Handling Inequalities

This section provides a functionally enhanced algorithm for handling inequality
constraints. First, it solves a given constraint system in the same way as the basic
algorithm. Then it collects all the inactive constraints and resolves them with
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quasi-linear optimization, which is similar to the Cassowary constraint solver
[1, 4]. Quasi-linear optimization finds a vector that satisfies a set of linear equal-
ity and inequality constraints and also that minimizes an objective function
composed as a sum of absolute values of linear expressions.

The enhanced algorithm treats both equality constraints ax = c and inequal-
ity ones ax ≥ c. However, in the first step, it assumes that all the constraints
were equations, and obtains an LU decomposition (1) in the same way as the
basic algorithm.

In the second step, it correctly adjusts the constraints by introducing what
are called ‘slack variables’ in the area of linear programming. It rewrites each
constraint into ax = c + σs where s ≥ 0, and σ = 0 if the constraint is an
equation, or σ = 1 if not. With the rewriting, the constraint system can be
expressed as Ax = c + Fs where s = (s1, s2, . . . , sm)T ≥ 0 and F is the m×m
diagonal matrix whose (i, i)-th entry is σi (= 0 or 1).

Next, the algorithm represents each inactive constraint aix = c + σisi with
only s. To do this, it expresses x with s (more precisely, si’s for the active
constraints) by introducing an n × m matrix G that consists of the rows of
F corresponding to the active constraints. Then, solving Ly = d + Gs and
x = T1T2 · · ·Tty, it obtains x = v +Hs. Thus it rewrites the inactive constraint
into aiHs− σisi = ci − aiv.

Finally, to obtain the values of s, the algorithm creates a quasi-linear opti-
mization problem and resolves it with the simplex method [12]. For the indices
i1, i2, . . ., im′ of the inactive constraints, it constructs the following problem by
introducing new non-negative variables δ+

ik
and δ−ik

for 1 ≤ k ≤ m′:

minimize
∑m′

k=1

{
wik

(δ+
ik

+ δ−ik
)
}

(3)

subject to aik
Hs− σik

sik
= cik

− aik
v + δ+

ik
− δ−ik

(1 ≤ k ≤ m′)

where wik
indicates the weight corresponding to the preference of the ik-th con-

straint (e.g. 106, 103, and 1 for strong, medium, and weak constraints respec-
tively).4 Intuitively, each (δ+

ik
+δ−ik

) indicates the error |aik
Hs−σik

sik
−cik

+aik
v|

of the k-th inactive constraint, and the problem minimizes the sum of the
weighted errors of the inactive constraints.

To understand the enhanced algorithm, consider the constraint system con-
sisting of x1 ≥ 0, x2 ≥ 0, −x1 ≥ −2,−x2 ≥ −2, and x1+x2 = 5 in this order, and
also assume that their weights are 106, 106, 103, 103, and 1 respectively. First,
the algorithm selects x1 ≥ 0 and x2 ≥ 0 as the active constraints, and constructs
an LU decomposition for x1 = 0 and x2 = 0. Second, it introduces non-negative
variables s1, s2, s3, s4, and s5, and rewrites all the constraints into x1 = 0 + s1,
x2 = 0 + s2, −x1 = −2 + s3, −x2 = −2 + s4, and x1 + x2 = 5 + 0 · s5 respec-
tively. Next, using the LU decomposition, it expresses x1 and x2 as x1 = s1 and
4 It should be noted that such real-valued weights might lead to incorrect solutions. In

fact, Cassowary avoids this problem by introducing ‘symbolic’ weights [1]. However,
HiRise is optimistic about the problem since it is assumed to handle a relatively
small number of inequality conflicting constraints (see Section 8).
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x2 = s2. Then it rewrites the remaining inactive constraints into −s1− s3 = −2,
−s2 − s4 = −2, and s1 + s2 − 0 · s5 = 5. Finally, it resolves the optimiza-
tion problem that minimizes 103(δ+

3 + δ−3 )+103(δ+
4 + δ−4 )+ (δ+

5 + δ−5 ) subject to
−s1−s3 = −2+δ+

3 −δ−3 , −s2−s4 = −2+δ+
4 −δ−4 , and s1+s2−0·s5 = 5+δ+

5 −δ−5 .
Any solution to this problem must satisfy s1 = s2 = 2, s3 = s4 = δ+

3 = δ−3 =
δ+
4 = δ−4 = δ+

5 = 0, and δ−5 = 1 (s5 may be arbitrary). Thus the solution to
the original system is x1 = 2 and x2 = 2. Note that the weakest constraint
x1 + x2 = 5 is maximally satisfied.

Similar to the basic algorithm, the enhanced algorithm as a whole can be
regarded as handling the locally-error-better (LEB) comparator. It is because the
objective function (3) implements weighted-sum-better (WSB), which is more
strictly restrictive than LEB; that is, any WSB solution is also an LEB one [3].

If edit constraints try to change variable values, the algorithm updates cik
−

aik
v for each k (which also reflects stay constraints), and then incrementally

re-optimizes the problem in the same way as Cassowary. If inserted or deleted
constraints update the LU decomposition, it reconstructs a problem.

Usually, the algorithm can considerably reduce the sizes of optimization prob-
lems as follows:

– If the i-th constraint is equality (σi = 0), it may eliminate si. In the above
example, s5 could be deleted.

– If the k-th inactive constraint is inequality (σik
= 1), it can omit δ+

ik
. The

above example could remove δ+
3 and δ+

4 .

With these reductions, the numbers of variables and constraints in an optimiza-
tion problem become (m1 + m2 + m − n) and (m − n) respectively, where m1

and m2 indicate the numbers of the inequality constraints and inactive equality
ones respectively.5 Therefore, if the given system contains only small numbers
of inequality constraints and conflicting (or possibly redundant) constraints, the
algorithm can efficiently solve the optimization problem.

5 Performance Techniques

This section provides two techniques for improving the performance of the basic
algorithm. Both of them can be used together with the technique for handling
inequality constraints.

5.1 Utilizing Sparsity

In usual GUI applications, constraint systems are sparse, that is, most individual
constraints refer to only small numbers of variables even if entire systems are
large. Therefore, resulting coefficient matrices are also sparse ones where most
5 Note that the simplex method needs not to introduce artificial variables. For each

rewritten inactive constraint, it can always select one of δ+
ik

, δ−ik
, and sik as a basic

variable.
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entries are zeros. From the viewpoint of efficiency, it is desirable for the algorithm
to preserve the sparsity of the matrices. However, in transforming them into
lower triangular ones, it sometimes yields nonzero entries called ‘fill-ins’ [11] at
the positions where nonzero entries have been lain. Thus it may degrade the
sparsity of the original matrices.

This subsection describes a performance technique using the sparsity of con-
straint systems. It restrains the occurrences of fill-ins by adopting an ordering
method for sparse matrices [11]. Generally, ordering methods exchange rows and
columns of matrices to minimize the numbers of fill-ins.

To realize this, the proposed technique separates constraints in a system into
required and preferential ones, and applies an ordering method to the partial
matrix corresponding to required constraints. This process is possible because
there are no differences among the preferences of required constraints.

The technique performs kernel generation and Tewarson’s method [11] below
while the basic algorithm is computing an LU decomposition from scratch.

1. Generate a kernel in the following two steps:
(a) Seek a required constraint with only one variable. If such a constraint

is found, move its nonzero entry to the pivot position, transform it into
one, and repeat this operation (ignore the processed variable afterward).

(b) Search for a required constraint with a variable referred by no other
required ones. If such a constraint is detected, move the corresponding
entry to the pivot, alter it into one, eliminate the remaining entries, and
iterate this operation (disregard this constraint afterward).

2. Perform LU decomposition successively for the rest of the required con-
straints. Use Tewarson’s method in selecting variables and constraints for
pivoting; that is, by examining the partial lower triangular matrix obtained
by the current LU decomposition, minimize the product {(the number of the
unprocessed nonzero entries in the row corresponding to the constraint) −
1} × {(the number of the unprocessed nonzero entries in the column corre-
sponding to the variable)− 1}.
For some situations, handling the sparsity of preferential constraints might

be promising. The above technique is also applicable to the inside of each pref-
erential level of constraint hierarchies, although it has not been implemented.

5.2 Exploiting Disjointness

In many GUI applications, constraint systems have disjointness; that is, large
systems may be divided into multiple smaller independent components. For ef-
ficiency, it is preferable for the algorithm to solve such disjoint components
separately.

This subsection explains a performance technique adopting the disjointness
of constraint systems. Basically, for each disjoint component of a system, it
maintains and solves a distinct subsystem.

It is necessary to integrate LU decompositions when added constraints merge
multiple components. For simplicity, suppose that two components need to be
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merged. Since they are disjoint, they do not share any variables. Therefore, even
if they are merged, the hierarchical independence of each constraint will not
change. Thus, with the active constraint sets Bx = c and B′x′ = c′ for these
components, the merged set can be expressed as follows:(

B 0
0 B′

)(
�

�
′
)

=
(
�

�
′
)

. (4)

Now, let the LU decompositions of B and B′ be BT1T2 · · · Tt = L and B′T ′
1T

′
2 · · ·

T ′
t′ = L′ respectively. Then the following holds:(

B 0
0 B′

)(
T1 0
0 E

)(
T2 0
0 E

)
· · ·
(

Tt 0
0 E

)(
E 0
0 T ′

1

)(
E 0
0 T ′

2

)
· · ·
(

E 0
0 T ′

t′

)
=
(

L 0
0 L′

)
.

It can be regarded as an LU decomposition of the active coefficient matrix of (4)
in the form of (1). Thus multiple separately solved components can be efficiently
integrated.

It might be more fruitful to utilize the ‘partial’ disjointness of constraint
systems that consist of almost disjoint components. The current (perhaps un-
satisfactory) solution to this issue is to recursively apply the above disjointness
technique, which actually depends on the way of the construction of constraint
systems. Another more aggressive solution is an open problem.

6 The HiRise Constraint Solver

Based on the proposed algorithm, Java and C++ versions of the HiRise con-
straint solver have been developed. Mainly, HiRise was designed for the con-
struction of interactive GUIs. It allows programmers to create variables and
constraints as Java or C++ objects, and to insert/delete constraints into/from
the solver object. The supported kinds of constraints are linear equality, linear
inequality, stay, and edit. Currently, the Java version provides the full function-
ality of HiRise, whereas the C++ version implements only the basic algorithm.
The present Java implementation consists of approximately ten thousand lines
of code. Fig. 1 illustrates the screen snapshots of sample applications developed
in C++ for Microsoft Windows.

7 Experiments

This section provides the results of two experiments on the performance of the
HiRise constraint solver. Both of the experiments used an actual application
for editing a tree depicted in Fig. 2. In the application, the layout of a tree
is defined with constraints as follows: subtrees sharing the same parent nodes
are adjacent, and the intervals of neighboring leaves are equal. Also, it adds six
inequality constraints to a tree: four inequalities confine the tree in the window,
and the other two prevent it from getting reversed. The application automatically
generates a tree with an irregular structure using random numbers.
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(a) (b)

Fig. 1. Sample applications of HiRise: (a) one that allows a user to edit a graph by
adding, moving, and staying nodes, and fixing edge directions, where each inner node
is constrained at the barycenter of its adjacent nodes; (b) another that enables a user
to operate a picture that approximates the fractal diagram known as the Koch curve,
which is realized with a finite number of vertices constrained by linear equations

Fig. 2. An application for editing a tree

First, Experiment 1 compared the performance of HiRise with Cassowary
[1, 4] and QOCA [4, 10] using medium-scale constraint systems. The used im-
plementations of Cassowary and QOCA were version 0.55 in Java and version 1.0
beta 2 of LinIneqSolver in Java respectively, both of which were distributed by
the authors of the original papers. These programs were compiled and executed
with Java Development Kit 1.2.1 from Sun Microsystems. The execution envi-
ronment was a Sun Ultra 60 workstation with a single 296 MHz UltraSPARC-II
processor running Solaris 7.

The table below shows the results of Experiment 1. It gives the numbers
of inserted and deleted constraints, the total numbers of constraints, and the
times in milliseconds required for executing operations of editing a tree. In the
experiment, each solver was given a tree of the same shape generated with a
certain seed of random numbers.

Numbers of constraints Times for execution
Insert Delete Total HiRise Cassowary QOCA

Initial layout 512 4 508 1771 2289 4953
Start move 2 0 510 8 1316 34
Repeat move 0 0 510 1 2 3
Finish move 0 2 508 8 1485 1
Add node 6 2 512 28 117 741
Remove node 2 6 508 26 103 122

Overall, HiRise exhibited higher performance than Cassowary and QOCA.
In particular, its incremental constraint satisfaction is usually much faster than
them, which impresses the power of hierarchical independence analysis.

Next, Experiment 2 measured the scalability of HiRise. The following table
illustrates the results of this experiment, where the numbers of constraints are
the ones immediately after the initial solutions were computed:
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Numbers of constraints 508 1024 1524 2012 2536
Initial layout 1771 12777 38634 87161 170062
Start move 8 15 23 31 40
Repeat move 1 3 4 5 6
Finish move 8 13 21 28 35
Add node 28 148 265 452 694
Remove node 26 114 189 245 380

The results indicate that HiRise is sufficiently rapid even for a system of more
than two thousand constraints. The only problem is that it costs much times
to obtain initial solutions, which is O(mn2) in time complexity. However, the
author is attempting to alleviate this problem since the current implementation
for utilizing the sparsity of constraint systems is rather naive.

It should be noted that the performance of HiRise actually depends on vari-
ous aspects of its algorithm, that is, hierarchical independence analysis, the way
of inequality handling, and the performance techniques for sparsity and disjoint-
ness. A more thorough evaluation of how much each of them works for different
situations is one of the future work.

8 Discussion

As shown in the experimental results, HiRise is usually faster than Cassowary
[1, 4] and QOCA [4, 10] for hundreds of constraints, and is further scalable up to
thousands of constraints. It is because HiRise performs hierarchical independence
analysis for fast handling preferential constraints, and also because it adopts
the performance techniques using the sparsity and disjointness of constraint
systems. Only, it may slow down as the number of inequalities grows, since it
must reconstructs an internal simplex tableau after updating the corresponding
LU decomposition.

To solve constraint hierarchies, HiRise uses the locally-error-better (LEB)
comparator, which is the same as Indigo [2]. By contrast, Cassowary adopts
weighted-sum-better, which is a little more restrictive than LEB, and QOCA
exploits least-squares-better (LSB), which is further more discriminative than
LEB. It is known that LSB is useful to applications with many conflicting pref-
erential constraints, because it relaxes the constraints by uniformly distributing
their errors and thus exhibits the ‘least-surprise’ behavior to users. Therefore,
QOCA is sometimes the most functionally advantageous among these solvers.

In summary, HiRise is suitable for massive constraint systems including rela-
tively small numbers of inequalities and not necessitating the uniform relaxation
of conflicts. Particularly, it is fitted to properly designed large-scale diagrams,
as proved in the previous section.

9 Conclusions and Future Work

This paper proposed an algorithm for satisfying systems of linear equality and
inequality constraints with hierarchical preferences. It also presented the HiRise
constraint solver, which is based on the algorithm and is designed for user in-
terface construction, and it showed that HiRise is scalable up to thousands of
simultaneous constraints in real-time execution.
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Using HiRise, the author is developing a Java-based constraint programming
language that allows programmers to specify constraints more easily. Also, the
author is planning to revise the C++ version of HiRise so that it will provide
the full functionality and also a further scalability.
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