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Abstract. Constraint hierarchies provide a framework for soft constraints, and have been
applied to areas such as artificial intelligence, logic programming, and user interfaces. In
this framework, constraints are associated with hierarchical preferences or priorities called
strengths, and may be relaxed if they conflict with stronger constraints. To utilize con-
straint hierarchies, researchers have designed and implemented various practical constraint
satisfaction algorithms. Although existing algorithms can be categorized into several ap-
proaches, what kinds of algorithms are possible has been unclear from a more general
viewpoint. In this paper, we propose a novel theory called generalized local propagation as
a foundation of algorithms for solving constraint hierarchies. This theory formalizes a way
to express algorithms as constraint scheduling, and presents theorems that support possible
approaches. A benefit of this theory is that it covers algorithms using constraint hierarchy
solution criteria known as global comparators, for which only a small number of algorithms
have been implemented. With this theory, we provide a new classification of solution criteria
based on their difficulties in constraint satisfaction. We also discuss how existing algorithms
are related to our theory, which will be helpful in designing new algorithms.

Keywords: constraint hierarchies, soft constraints, constraint satisfaction, local propaga-
tion

1. Introduction

Constraint hierarchies [4, 6, 23] provide a framework for soft constraints, and
have been applied to areas such as artificial intelligence [19], logic program-
ming [21, 25], and user interfaces [4, 17, 20]. In this framework, constraints
are associated with hierarchical preferences or priorities called strengths. In-
tuitively, solutions to constraint hierarchies are determined so that they will
satisfy as many strong constraints as possible, leaving weaker inconsistent con-
straints unsatisfied. For example, the hierarchy of the constraints strong x = 0
and weak x = 1 yields the solution x← 0. This property enables us to specify
preferential or soft constraints that may be used when the set of required
or hard constraints is under-constrained. Moreover, constraint hierarchies are
sufficiently general to handle powerful constraints such as arithmetic equations
and inequalities over the real numbers. Additionally, they allow “relaxing”
constraints with the same strength by using a given solution criterion such as
the least-squares method.

To utilize constraint hierarchies, researchers have designed and imple-
mented various practical constraint satisfaction algorithms. We can categorize
most existing algorithms into the following three approaches:
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2 H. HOSOBE AND S. MATSUOKA

The refining method finds (all) solutions by satisfying the strongest level
first and then weaker levels successively. It is mainly employed in con-
straint logic programming languages such as HCLP(R, �) [25].

Local propagation obtains a solution by repeatedly selecting uniquely satis-
fiable constraints. It is used in various constraint solvers for user interfaces
[9, 15, 20].

The optimization approach (approximately) computes a solution by trans-
forming a constraint hierarchy into an optimization problem. It is adopted
in recent arithmetic constraint solvers for user interfaces [7, 12, 13].

Indeed research on actual constraint satisfaction algorithms has progressed,
but what kinds of algorithms are possible has been unclear from a more
general viewpoint; past research has focused on how to solve hierarchies of
certain kinds of constraints by adopting specific solution criteria. Desirably,
we should have some general idea useful for further improving the satisfaction
of constraint hierarchies.

To meet this demand, we propose a novel theory called generalized local
propagation (GLP) as a foundation of algorithms for solving constraint hi-
erarchies. This theory formalizes a way to express algorithms as constraint
scheduling, and presents theorems that support possible approaches. Among
the three major approaches mentioned above, we can actually regard the refin-
ing method and local propagation as methods for constraint scheduling. This
research is the first attempt that theoretically integrates these two approaches,
and also that implies the possibility of more aggressive algorithms for solving
constraint hierarchies.

A benefit of this theory is that it covers algorithms using constraint hier-
archy solution criteria known as global comparators, for which only a small
number of algorithms have been implemented. Typically, local propagation is
used to handle other criteria known as local comparators, while the refining
method is employed to treat global comparators. Local comparators have been
considered to be more efficiently implementable since they can be processed
by “greedy” algorithms, such as local propagation, which solve one constraint
at a time [1]. An important point of GLP is that it allows local propagation
to handle global comparators. In other words, it expands the applicability
of greedy algorithms. Actually, it gives theoretical backing to our previous
DETAIL algorithm [15], which uses local propagation to solve constraint
hierarchies with global comparators.

With this theory, we provide a classification of solution criteria based on
their difficulties in constraint satisfaction. Our classification considers the ap-
plicability of the refining method and local propagation. It is new because the
past classification is based on the constructive definition of solution criteria.

We also discuss how existing algorithms are related to our theory. These
algorithms employ various ideas to achieve soundness, completeness, and/or
efficiency, and we explain such ideas in terms of GLP. We believe that it will
be helpful in designing new algorithms.
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SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 3

This paper is organized as follows: Section 2 describes previous research
that has theoretically investigated algorithms for handling soft constraints.
Section 3 provides a reformulation of constraint hierarchies to better analyze
their properties. Section 4 formalizes GLP to express algorithms as constraint
scheduling. Section 5 shows theoretical backgrounds of the refining method
and local propagation by using GLP. Section 6 discusses the theoretical results
of GLP by presenting a new classification of solution criteria and also the
relationships of GLP with existing algorithms. Finally, Section 7 mentions
the conclusions and future work of this research.

2. Related Work

In this section, we overview previous theoretical research on constraint hier-
archies and other frameworks for soft constraints (later in Subsection 6.2, we
will describe the relationships of our theory with actual algorithms for solving
constraint hierarchies).

Borning et al., the originators of constraint hierarchies [4], have investi-
gated theoretical aspects of constraint hierarchies [6, 24]. However, their the-
oretical analysis mainly focuses on hierarchical constraint logic programming
(HCLP), and does not cover local propagation for constraint hierarchies.

Jampel constructed a certain HCLP instance that separates the HCLP
scheme into compositional and non-compositional parts [16]. The method is
expected to improve the efficiency of interpreters and compilers since the
compositional part is efficiently implementable. However, it is unclear whether
such a method is applicable to constraint scheduling in the sense of our
research (we will further discuss this notion of compositionality in Subsec-
tion 6.3).

Freuder and Wallace proposed partial constraint satisfaction to handle
problems that are either impossible or impractical for constraint satisfaction
[10]. Theoretically, it is sufficiently general to simulate constraint hierarchies.
However, their algorithms are specific ones which search for approximate
solutions by “weakening” problems over finite domains.

Recently, researchers have conducted theoretical studies on constraint prop-
agation for constraint satisfaction problems with soft constraints [2, 22]. How-
ever, their results are hard to relate with constraint hierarchies due to the large
differences of the underlying frameworks.

3. Reformulation of Constraint Hierarchies

This section reformulates constraint hierarchies to facilitate the investigation
of their properties. The major differences from the original formulation by
Borning et al. [6] are to explicitly parameterize target hierarchies, and to
replace concrete embedded functions and relations with more abstract ones.

Both of the formulations determine solutions to constraint hierarchies by
comparing how well valuations (or potential solutions) satisfy constraints.
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4 H. HOSOBE AND S. MATSUOKA

Also, they realize the hierarchical preferences of constraints by more respecting
stronger constraints in the comparison. The rest of this section presents our
formulation of constraint hierarchies from the bottom up.

First, we define concepts related to variables. We denote the domain of
variables and the set of all variables as D and X respectively (we assume for
simplicity that all variables have the same domain). To represent assignments
of values to variables, we use valuations written as θ possibly with primes.
Given a variable x ∈ X , θ(x) expresses the value of x, which is in D.

Definition 1. (domain; variable; valuation) Let D be the domain of vari-
ables. Let X be the set of all variables. A valuation is a mapping θ : X → D.
Let Θ be the set of all valuations.

We simply consider constraints as elements of the set C. To assign seman-
tics to constraints, we use error functions e that evaluate how well valuations
satisfy constraints. Intuitively, e(c, θ) expresses the error of the constraint
c under the valuation θ. The error being zero means that the constraint is
exactly satisfied. If the error is nonzero, it must be a positive real value, and
a larger value means that the constraint is worse satisfied.

Definition 2. (constraint; error function) Let C be the set of all constraints.
An error function is a mapping e : C ×Θ → {0} ∪R+.

Major error functions are the predicate and metric error functions. The
predicate error function can be used for various kinds of constraints expressible
as mathematical relations. It is defined to return 0 if a given constraint holds,
and 1 otherwise.1 By contrast, the metric error function is mainly adopted for
arithmetic constraints composed of arithmetic functions and relations [18].
It expresses constraint errors as some distances. Typically, for arithmetic
equality constraints, it uses the differences between the left- and right-hand
sides. For example, the error of the constraint x1 = x2 may be given as follows:

e(“x1 = x2”, θ) ≡ |θ(x1)− θ(x2)|

Next, we present definitions related to strengths. A strength is a non-
negative integer, and a larger integer means that the strength is weaker. We
write c/k to represent constraint c with strength k.

Definition 3. (strength; constraint with a strength) Let l be a constant pos-
itive integer. A strength of a constraint is an integer k such that 0 ≤ k ≤ l.
Let K be the set of all the strengths. Given c ∈ C and k ∈ K, constraint c
with strength k is the pair c/k ∈ C ×K.

Instead of using non-negative integers, we sometimes write strengths as
symbols required, strong, medium, and weak.

Now we define constraint hierarchies as follows:

Definition 4. (constraint hierarchy) A constraint hierarchy is a finite set H
of constraints with strengths. Let H be the set of all constraint hierarchies.

© 2003 Kluwer Academic Publishers 
This is a post-peer-review, pre-copyedit version of an article published in Constraints: An 
International Journal. The final authenticated version is available online at: 
http://dx.doi.org/10.1023/A:1021946627805. 

 



SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 5

It should be noted that, since constraint hierarchies are ordinary sets in
our formulation, a hierarchy never includes multiple instances of the same
constraint. However, since the meanings of constraints are assigned by error
functions, distinct constraints may work equivalently as a result. For instance,
both distinct c/k and c′/k may virtually work as the same constraint x = 0
with strength k in a hierarchy.2 By contrast, previous work defined constraint
hierarchies by using multisets [6, 16] or vectors [23].

Next, we define level comparators
·/k

≤ that compare how well valuations

satisfy constraints at a certain level of a hierarchy. Intuitively, θ
H/k

≤ θ′ means
that θ is better than or similar to θ′ in satisfying level k of H . Also, we define

a relation
·/k
< , which indicates “better than.”

Definition 5. (level comparator) Let k ∈ K. A level comparator is a ternary

relation
·/k

≤ : H × Θ × Θ such that, for any H, H ′ ∈ H and θ, θ′, θ′′ ∈ Θ, the
following conditions hold:3

∀c ∈ C (c/k ∈ H ⇔ c/k ∈ H ′) ⇒ (θ
H/k

≤ θ′ ⇔ θ
H′/k

≤ θ′) (1)

∀c/k ∈ H (e(c, θ) = e(c, θ′′)) ⇒ (θ
H/k

≤ θ′ ⇔ θ′′
H/k

≤ θ′) (2)

∀c/k ∈ H (e(c, θ′) = e(c, θ′′)) ⇒ (θ
H/k

≤ θ′ ⇔ θ
H/k

≤ θ′′) (3)

∀c/k ∈ H (e(c, θ) ≤ e(c, θ′)) ⇒ θ
H/k

≤ θ′ (4)

θ
H/k
< θ′ ∧ θ′

H/k
< θ′′ ⇒ θ

H/k
< θ′′ (5)

where θ
H/k
< θ′ is defined as θ

H/k

≤ θ′ ∧ ¬ θ′
H/k

≤ θ.

Conditions (1)–(3) say that the scope of a level comparator is restricted to
the inside of the designated level. Condition (4) indicates that if the error of
each constraint at a level under a valuation is smaller than or equal to the one
under another valuation, then the former valuation is better than or similar
to the latter in satisfying the level. Condition (5) is the “transitivity” of a
level comparator. The original formulation [6] includes (1)–(3) operationally
and presents (5) explicitly. Also, it is consistent with (4) although it does not
clarify an equivalent concept.

An instance of level comparators is the one for least-squares-better [6] (a hi-
erarchical comparator that we will describe later). It applies the least-squares
method to conflicting constraints at a level. More specifically, it compares two
valuations by using the metric error function e and summing the squares of
errors of constraints at the given level. Formally, it is defined as follows:

θ
H/k

≤ θ′ ⇔
∑

c/k∈H

e(c, θ)2 ≤
∑

c′/k∈H

e(c′, θ′)2
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6 H. HOSOBE AND S. MATSUOKA

It is easy to see that the definition fulfills all the conditions in Definition 5.
Regarding condition (1), the level comparator will give the same results even
if unrelated levels are changed. Concerning (2) and (3), it produces equivalent
results as far as it obtains the same constraint errors from the associated
level. With regard to (4), it evaluates a valuation no worse than another if
the former always obtains either smaller or equal constraint errors. Finally,
concerning (5), it exhibits transitivity because it uses the total order among
the real numbers.

For convenience, we define
·/k

≥ (worse than or similar to),
·/k∼ (similar to),

·/k
> (worse than), and

·/k

�∼ (incomparable with) as follows: θ
H/k

≥ θ′ ⇔ θ′
H/k

≤ θ;

θ
H/k∼ θ′ ⇔ θ

H/k

≤ θ′ ∧ θ
H/k

≥ θ′; θ
H/k
> θ′ ⇔ θ

H/k

≥ θ′ ∧ ¬ θ
H/k

≤ θ′; θ
H/k

�∼ θ′ ⇔
¬ θ

H/k

≤ θ′ ∧ ¬ θ
H/k

≥ θ′.
Next, we define hierarchical comparators

·
< that compare how well valu-

ations satisfy overall constraint hierarchies by combining level comparators.

Intuitively, θ
H
< θ′ means that θ is better than θ′ in satisfying H .

Definition 6. (hierarchical comparator) A hierarchical comparator is a ternary
relation

·
<: H ×Θ ×Θ such that, for any H ∈H and θ, θ′ ∈ Θ,

θ
H
< θ′ ⇔ ∃k ∈ K (∀k′ ∈ K (k′ < k ⇒ θ

H/k′
∼ θ′) ∧ θ

H/k
< θ′)

A hierarchical comparator is defined as a lexicographic ordering with level
comparators as its components. Consequently, a level comparator has ab-
solute priority over weaker ones. In the rest of this paper, we often refer
to hierarchical comparators simply as comparators if there is no danger of
misunderstanding.

For convenience, we define
·
> (worse than), ·∼ (similar to),

·≤ (better than

or similar to),
·≥ (worse than or similar to), and

·
�∼ (incomparable with) as

follows: θ
H
> θ′ ⇔ θ′

H
< θ; θ

H∼ θ′ ⇔ ∀k ∈ K (θ
H/k∼ θ′); θ

H≤ θ′ ⇔ θ
H
< θ′∨θ

H∼ θ′;

θ
H≥ θ′ ⇔ θ

H
> θ′ ∨ θ

H∼ θ′; θ
H

�∼ θ′ ⇔ ¬ θ
H≤ θ′ ∧ ¬ θ

H≥ θ′.
The original formulation [6] proposed global and local comparators as major

classes of hierarchical comparators. Level comparators for global comparators
first compute non-negative real numbers by arithmetically integrating con-
straint errors, and then compare the results by using the ordinary relation
≤ on real numbers. Examples of global comparators are least-squares-bet-
ter (LSB), weighted-sum-better (WSB), and worst-case-better (WCB). As
already described, LSB uses the sum of the squares of metric constraint errors.
By contrast, WSB exploits the sum of metric errors, and WCB adopts the
maximum of metric errors.

Local comparators are typically used in local propagation, and are practi-
cally important. The following is their definition that has been rewritten for
our constraint hierarchy formulation:

© 2003 Kluwer Academic Publishers 
This is a post-peer-review, pre-copyedit version of an article published in Constraints: An 
International Journal. The final authenticated version is available online at: 
http://dx.doi.org/10.1023/A:1021946627805. 

 



SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 7

Definition 7. (local comparator) Let k ∈ K. A level comparator
·/k

≤ is local
if and only if for any H ∈H and θ, θ′ ∈ Θ,

θ
H/k

≤ θ′ ⇒ ∀c/k ∈ H (e(c, θ) ≤ e(c, θ′)) (6)

A hierarchical comparator is local if and only if it consists of local level
comparators.

A local hierarchical comparator using the predicate error function is re-
ferred to as locally-predicate-better (LPB), and a one employing the metric
function as either locally-metric-better or locally-error-better (LEB). By (4)
and (6), any local level comparator results in

θ
H/k

≤ θ′ ⇔ ∀c/k ∈ H (e(c, θ) ≤ e(c, θ′))

which is equivalent to the definition presented by the original formulation [6].
In addition to global and local comparators, regional comparators have

been proposed [23]. Their level comparators are defined by separating
·/k
< and

·/k∼ as follows:

θ
H/k
< θ′ ⇔ ∀c/k ∈ H (e(c, θ) ≤ e(c, θ′)) ∧ ∃c′/k ∈ H (e(c′, θ) < e(c′, θ′))

θ
H/k∼ θ′ ⇔ ¬ θ

H/k
< θ′ ∧ ¬ θ

H/k
> θ′

Regional comparators are other variations of local comparators, and are said
to be more discriminative than local ones. However, to our knowledge, they
have never been used in practice.

The following defines constraint hierarchy satisfiers S that represent the
satisfaction of constraint hierarchies. Intuitively, given a set Θ′ of valuations,
S(H, Θ′) is the set of valuations obtained by maximally satisfying H within
Θ′. More formally, a valuation in S(H, Θ′) is an element of Θ′ such that there
is no better valuation in Θ′ in satisfying H .

Definition 8. (constraint hierarchy satisfier) Let H ∈ H and Θ′ ⊆ Θ. A
constraint hierarchy satisfier is a mapping S : H × 2Θ → 2Θ defined as

S(H, Θ′) ≡ {θ ∈ Θ′ | ¬ ∃θ′ ∈ Θ′ (θ′
H
< θ)}

We write S(H) as a shorthand of S(H, Θ).

Finally, we define solutions to constraint hierarchies. Intuitively, a solution
to H is a valuation that maximally satisfies H among the set of all valuations.

Definition 9. (solution) A solution to a constraint hierarchy H is a valua-
tion in S(H).
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8 H. HOSOBE AND S. MATSUOKA

One difference between the original formulation [6] and ours is that the
original allows weights of constraints inside levels when they use global com-
parators, while we omitted weights for simplicity. A weight of a constraint
is a positive real which scales the error of the constraint. It means that,
unlike strengths, weights would always be associated with the error function.
Therefore, we could easily rewrite our theory to incorporate weights.

A more significant difference is that the original formulation restricts con-
straints at level 0 to being required, whereas ours allows conflicting constraints
at level 0. This is because our definition excluded the special treatment of level
0 for simplicity. However, as far as level 0 is not over-constrained, the resulting
solutions are the same. Also, even if we added the condition for constraints
at level 0 being required, we could accommodate our following results.

Particularly, if we handle constraint hierarchies with no constraints at level
0, we can easily show that our formulation is equivalent to the original. The
original formulation defines solutions to hierarchies as follows:

Sorig(H) ≡ {θ ∈ S0(H) | ¬ ∃θ′ ∈ S0(H) (better(θ′, θ, H))}
where S0(H) ≡ {θ ∈ Θ | ∀c/0 ∈ H (e(c, θ) = 0)}

Here the relation better is the same as our hierarchical comparator
·
<, except

that better does not consider level 0. Given a hierarchy with no constraints at
level 0, we have S0(H) = Θ, and therefore

Sorig(H) ≡ {θ ∈ Θ | ¬ ∃θ′ ∈ Θ (better(θ′, θ, H))}
Thus Sorig(H) is equal to S(H).

4. Generalized Local Propagation

Classical local propagation satisfies a constraint graph by successively solving
individual constraints in an order closely associated with its graph topology.
In this section, we generalize local propagation so that it can solve a set of
constraints at a time and can also arbitrarily schedule such constraint sets.

To formalize this, we introduce ordered partitions 〈P,≤P 〉 as follows: a
partition P of a constraint hierarchy is a set generated by decomposing the
hierarchy into disjoint subsets called blocks , and ≤P is a partial order among
blocks in P .

Definition 10. (ordered partition) An ordered partition of a constraint hier-
archy H is a pair 〈P,≤P 〉 such that P is a partition of H (that is,

⋃
B∈P B = H

and ∀B ∈ P ∀B′ ∈ P (B �= B′ ⇒ B ∩ B′ = ∅)), and ≤P is a partial order
over P . We refer to each element of P as a block, and let B <P B′ denote
B ≤P B′ ∧B �= B′.

Next, we define generalized local propagation (GLP), which obtains a set
of valuations by using an ordered partition of constraints and successively
satisfying blocks in a given partial order.
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SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 9

B1

B2

B4

B5

B3 B6

B7

B8

B9

before(B9, 〈P,≤P 〉)
terminals(〈P,≤P 〉)

Figure 1. An ordered partition.

Definition 11. (generalized local propagation) Generalized local propagation
w.r.t. an ordered partition 〈P,≤P 〉, written as π(〈P,≤P 〉), is defined as

π(〈P,≤P 〉) =




Θ if |P | = 0⋂
B∈terminals(〈P,≤P 〉)

S(B, π(before(B, 〈P,≤P 〉))) otherwise

where terminals and before are as follows:

terminals(〈P,≤P 〉) = {B′ ∈ P | ¬ ∃ B′′ ∈ P (B′ <P B′′)}
before(B, 〈P,≤P 〉) = 〈P ′,≤P ′〉

where P ′ = {B′ ∈ P | B′ <P B}
≤P ′ = {〈B′, B′′〉 ∈ P ′ × P ′ | B′ ≤P B′′}

Intuitively, terminals(〈P,≤P 〉) is the set of all blocks at terminal positions,
and before(B, 〈P,≤P 〉) is the “ordered sub-partition” of 〈P,≤P 〉 where all
blocks are before B. Since π is recursively defined, it successively solves each
blocks in some order respecting ≤P . This is always possible because ≤P is a
partial order.

As an example, consider the ordered partition 〈P,≤P 〉 with the blocks B1,
B2, . . ., B9 as illustrated in Figure 1. The partial order ≤P corresponds to the
reflexive transitive closure of all the arrows in Figure 1. Here terminals(〈P,≤P 〉)
is the set {B8, B9}. Also, before(B9, 〈P,≤P 〉) is the pair consisting of the set
{B1, B2, B4, B5, B7} and the partial order among them. Thus the satisfaction
of B9 is performed in the set of valuations obtained by applying GLP to the
preceding blocks.

5. Foundation of Algorithms for Solving Constraint Hierarchies

Using generalized local propagation (GLP), this section provides theoretical
backgrounds of algorithms for solving constraint hierarchies. We treat the
refining method first, and local propagation later.
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10 H. HOSOBE AND S. MATSUOKA

5.1. The Refining Method

This subsection shows a theoretical support for the refining method. To begin
with, we formalize the refining method in terms of GLP. For a constraint
hierarchy, we construct an ordered partition by decomposing the hierarchy
into levels.

Definition 12. (the refining method) The refining method w.r.t. a constraint
hierarchy H is π(〈P,≤P 〉) such that P = {B0, B1, . . . , Bl} and ∀k ∈ K ∀k′ ∈
K (Bk ≤P Bk′ ⇔ k ≤ k′) where each Bk′′ = {c/k′′ ∈ H}.

Now we show that, for any comparator, we can use the refining method to
solve constraint hierarchies. It is guaranteed by the soundness of the refining
method that uses an arbitrary comparator; that is, any results generated by
the refining method are always solutions to the given hierarchy.

Theorem 13. Suppose that an arbitrary comparator is used. For any H ∈
H, the refining method π(〈P,≤P 〉) w.r.t. H satisfies π(〈P,≤P 〉) ⊆ S(H).

Proof. See Appendix.

This theorem does not state the completeness of the refining method. In
fact, we cannot obtain the completeness when using an arbitrary comparator.
However, we can achieve it by adopting a restricted comparator. For this
purpose, we present a class of comparators called total comparators, which
can always compare valuations.

Definition 14. (total comparator) Let k ∈ K. A level comparator
·/k

≤ is total

if and only if for any H ∈ H and θ, θ′ ∈ Θ, the condition ¬ θ
H/k

�∼ θ′ holds.
A hierarchical comparator is total if and only if it consists of total level
comparators.

Global comparators are total, since they can always compare valuations
by internally comparing real numbers. Also, regional comparators are total by
their definition. By contrast, local comparators are not total since sometimes
they cannot compare valuations.

When exploiting total comparators, we can find all solutions by the refin-
ing method. The next theorem states the soundness and completeness of the
refining method using total comparators.

Theorem 15. Suppose that a total comparator is used. For any H ∈H, the
refining method π(〈P,≤P 〉) w.r.t. H satisfies π(〈P,≤P 〉) = S(H).

Proof. See Appendix.

Now we show a brief example of the refining method. Suppose that we solve
a constraint hierarchy H = {strong x1 = x2, medium x2 + 1 = x3, weak x1 =
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SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 11

0, weak x3 = 3} with least-squares-better. By the definition of the refining
method, we let B0 = {strong x1 = x2}, B1 = {medium x2 + 1 = x3},
and B2 = {weak x1 = 0, weak x3 = 3}. Then GLP solves H as follows:
First, it obtains S(B0, Θ) = {θ ∈ Θ | θ(x1) = θ(x2)}. Next, it produces
S(B1, S(B0, Θ)) = {θ ∈ Θ | θ(x1) = θ(x2) ∧ θ(x2) + 1 = θ(x3)}. Finally, it
finds S(B2, S(B1, S(B0, Θ))) = {θ(x1) = 1∧θ(x2) = 1∧θ(x3) = 2}, which can
be computed by minimizing x2

1 +(x3−3)2 subject to x1 = x2 and x2 +1 = x3.

5.2. Local Propagation

The original formulation of constraint hierarchies [6] presented global and
local comparators as separate classes. In this subsection, we propose a new
class of comparators called rational comparators, which integrate most global
and all local comparators. Also, we provide their fundamental properties that
are useful for designing constraint satisfaction algorithms.

First, we define rational comparators. The definition is unique in that it
provides how level comparators should react to the combination of constraint
hierarchies.

Definition 16. (rational comparator) Let k ∈ K. A level comparator
·/k

≤ is
rational if and only if for any H, H ′ ∈ H such that H ∩ H ′ = ∅ and any
θ, θ′ ∈ Θ,

θ
H/k

≤ θ′ ∧ θ
H′/k
< θ′ ⇒ θ

H∪H′/k
< θ′ (7)

θ
H/k

�∼ θ′ ⇒ ¬ θ
H∪H′/k∼ θ′ (8)

¬ θ
H/k
< θ′ ∧ ¬ θ

H′/k
< θ′ ⇒ ¬ θ

H∪H′/k
< θ′ (9)

A hierarchical comparator is rational if and only if it consists of rational level
comparators.

It should be noted that the disjointness condition of constraint hierarchies
H and H ′ in Definition 16 is necessary for a technical reason. It is both
theoretically and practically convenient to allow multiple occurrences of the
same constraint in a constraint hierarchy. However, we defined hierarchies
as ordinary sets, which follows that a hierarchy can include at most one
occurrence of each constraint. Instead, as mentioned in Section 3, we can
simulate such multiplicity by using an error function which evaluates distinct
constraints equivalently. The above disjointness condition of hierarchies is
needed to guarantee distinction among constraints.

Most comparators presented by the original formulation [6] are rational.
For example, least-squares-better and weighted-sum-better are rational. We
can easily prove it by showing that their level comparators satisfy each con-
dition in Definition 16. Generally, any global comparator satisfies (8), but
whether it fulfills the other conditions depends on its actual definition.

Importantly, the class of rational comparators also include local compara-
tors.
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12 H. HOSOBE AND S. MATSUOKA

Proposition 17. Any local level comparator is rational, and any local hier-
archical comparator is rational.

Proof. It is straightforward to derive all the conditions in Definition 16
from Definition 5 and Definition 7. �

A basic property of rational comparators is that any common solution to
two constraint hierarchies is also a solution to their combination.

Theorem 18. Suppose that a rational comparator is used. For any H, H ′ ∈
H such that H ∩H ′ = ∅, the following holds:

S(H) ∩ S(H ′) ⊆ S(H ∪H ′) (10)

Proof. See Appendix.

An important point about this theorem is that it provides a very “weak”
(or general) property that holds in many cases. It may be easily inferred from
the fact that (10) is true for any two hierarchies sharing no solutions. In fact,
rational comparators form a wide class including many useful comparators. It
should be noted, however, that a comparator being rational is not equivalent
to satisfying (10); that is, rationality is sufficient but not always necessary for
(10). It suggests that there may exist irrational comparators that fulfill (10),
although we have not found such a counterexample.

Among global comparators proposed by the original formulation [6], only
worst-case-better (WCB) is not rational. It is because its level comparator

θ
H/k

≤ θ′ ⇔ max
c/k∈H

e(c, θ) ≤ max
c′/k∈H

e(c′, θ′)

does not fulfill (7). Also, WCB occasionally does not satisfy (10). As an exam-
ple, consider the two constraint hierarchies H = {medium x1 = 0, weak x1 =
4} and H ′ = {strong x1(x1 − 4) = 0, medium (x1 − 2)2 = 0, weak x1 = 1}
over the domain D = {0, 1, 2, 3, 4}. Then both H and H ′ will have a unique
solution x1 ← 0. However, the solution to H ∪H ′ is only x1 ← 4, and thus
(10) does not hold.

Now we show how GLP validates local propagation. It is more general
than ordinary local propagation algorithms in the senses that it treats ra-
tional comparators as well as local ones, and also that it can solve multiple
constraints at a time.

To begin with, we prove that GLP using a rational comparator respects the
similarity of valuations for ordered partitions satisfying a certain condition.

Lemma 19. Suppose that a rational comparator is used. Let H be a con-
straint hierarchy, 〈P,≤P 〉 an ordered partition of H , and θ an element of
π(〈P,≤P 〉). Then, for any θ′ ∈ Θ, θ′ is in π(〈P,≤P 〉) if θ′ H∼ θ and

∀B ∈ P ∀k ∈ K ∀c/k ∈ B (e(c, θ) > 0
⇒ ∀B′ ∈ P (B′ <P B ⇒ ∀k′ ∈ K ∀c′/k′ ∈ B′ (k′ < k))) (11)
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Proof. See Appendix.

The following theorem states that such valuations are actual solutions to
the constraint hierarchy:

Theorem 20. Suppose that a rational comparator is used. Let H be a con-
straint hierarchy, 〈P,≤P 〉 an ordered partition of H , and θ an element of
π(〈P,≤P 〉). If (11) holds, then θ is a solution to H .

Proof. See Appendix.

Theorem 20 revealed the fact that, when using a rational comparator,
GLP w.r.t. an ordered partition satisfying (11) always finds actual solutions
to the original constraint hierarchy. Condition (11) means that unsatisfied con-
straints have only stronger constraints before them. In other words, it allows
satisfiable constraints to be scheduled after weaker ones. Unlike the result of
the refining method, this result of local propagation might be quite opposite to
naive intuition about constraint hierarchies; it tells us that, under appropriate
conditions, we are allowed to solve weak constraints before processing stronger
ones. We also emphasize that it permits most global comparators as well as
local ones.

Now we illustrate an example of local propagation using a global compara-
tor. Consider a constraint hierarchy H = {strong x1 = 0, strong x2 + x3 =
x4, medium x1 = x2, medium x2 = 2, weak x3 = 1} with least-squares-bet-
ter. We use an ordered partition whose blocks are B1 = {strong x1 = 0},
B2 = {medium x1 = x2, medium x2 = 2}, B3 = {weak x3 = 1}, and
B4 = {strong x2 + x3 = x4}, and also whose partial order is composed
of B1 <P B2, B2 <P B4, and B3 <P B4. Then GLP processes it as fol-
lows: First, it obtains S(B1, Θ) = {θ ∈ Θ | θ(x1) = 0}. Second, it yields
S(B2, S(B1, Θ)) = {θ ∈ Θ | θ(x1) = 0 ∧ θ(x2) = 1}. Next, it acquires
S(B3, Θ) = {θ ∈ Θ | θ(x3) = 1}. Finally, it generates S(B4, S(B2, S(B1, Θ))∩
S(B3, Θ)) = {θ(x1) = 0 ∧ θ(x2) = 1 ∧ θ(x3) = 1 ∧ θ(x4) = 2}. Note that
both of the medium constraints are relaxed while the weak constraint is
exactly satisfied. Nevertheless, the solution is correct because the ordered
partition satisfies the sufficient condition in Theorem 20; that is, the relaxed
medium constraints have only a stronger constraint strong x1 = 0 before
them. Also, note that we may solve the medium and weak constraints before
strong x2 + x3 = x4 since the strong constraint is exactly satisfiable.

Most local propagation algorithms handle only locally-predicate-better. In
the next theorem, we show that, for local comparators, we can use a weaker
sufficient condition than the one for rational comparators:

Theorem 21. Suppose that a local comparator is used. Let H be a constraint
hierarchy, 〈P,≤P 〉 an ordered partition of H , and θ an element of π(〈P,≤P 〉).
Then θ is a solution to H if

∀B ∈ P ∀k ∈ K ∀c/k ∈ B (e(c, θ) > 0
⇒ ∀B′ ∈ P (B′ <P B ⇒ ∀k′ ∈ K ∀c′/k′ ∈ B′ (k′ ≤ k))) (12)
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14 H. HOSOBE AND S. MATSUOKA

regional

rational

global WCB
LSB

WSB
local

total

LSB: least-squares-better

WSB: weighted-sum-better

WCB: worst-case-better

Figure 2. Classification of comparators.

Proof. Similar to the proofs of Lemma 19 and Theorem 20. �

Theorem 21 points out that GLP adopting local comparators can obtain
solutions to constraint hierarchies in a weaker condition than GLP using
ordinary rational ones. The difference of (12) from (11) is the existence of
an equality in the comparison of strengths. It enables GLP adopting local
comparators to solve constraints with equal strengths in an arbitrary order.

6. Discussion

We discuss the theoretical results of generalized local propagation (GLP) in
this section.

6.1. Classification of Comparators

Our classification of comparators added two new classes, total and rational
comparators. As illustrated in Figure 2, total comparators include all global
and regional ones, and rational ones include most global and all local ones.

The key point about our classification is that it is based on difficulties
in constraint satisfaction. Total comparators achieve both the completeness
and soundness in the refining method, whereas non-total ones guarantee only
the soundness. Rational comparators enable local propagation, and local ones
allow more aggressive local propagation.

The most significant contribution is the result related to rational but non-
local comparators such as least-squares-better and weighted-sum-better. Since
these comparators are practically important [7], their potential for efficient
constraint satisfaction, which we disclosed, should be informative to algorithm
designers.

6.2. Relationships with Existing Algorithms

We can actually relate GLP with existing algorithms for solving constraint
hierarchies. The points are which comparator an algorithm uses and how it
schedules constraints.

As shown in the previous section, we can solve various constraint hierar-
chies using the refining method. For example, ThingLab [4] solves constraint
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SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 15

hierarchies by processing the levels strongest to weakest, and finds locally-
error-better (LEB) solutions if there are no cyclic dependencies of constraints,
and otherwise least-squares-better ones by using the relaxation technique.
The Orange algorithm [8, 9, 23] obtains either weighted-sum-better (WSB)
or worst-case-better (WCB) solutions to hierarchies of linear equality and
inequality constraints by performing the simplex method at each level.

An interesting refining algorithm is DeltaStar [8, 23]. Basically, it satisfies
a constraint hierarchy with WSB, WCB, or LEB by successively applying a
“flat” solver to each level. To ensure the completeness for LEB, it maintains a
family of sets of solutions for each level, which can be viewed as using multiple
ordered partitions in GLP. To realize incremental constraint satisfaction, it
memorizes a valuation set for each level, and further decomposes levels of
hierarchies into disjoint sets.

Most existing local propagation algorithms solve hierarchies of multi-way
dataflow (or functional) constraints with locally-predicate-better. Blue [17] is
the first algorithm in this category. Given a constraint hierarchy, it constructs
a dataflow graph by successively selecting one of the strongest uniquely sat-
isfiable constraints. We can regard such a graph as an ordered partition in
Theorem 21.

The DeltaBlue algorithm [9, 17] is an incremental version of Blue. It in-
crementally updates dataflow graphs by exploiting a special data structure
“walkabout strength.” The algorithm is guaranteed by the blocked constraint
lemma [9], which we can consider as a specialization of Theorem 21.

DETAIL [15] is a local propagation algorithm that approximately handles
global comparators such as least-squares-better. It decomposes a constraint
hierarchy into disjoint components by adopting walkabout strengths, which
we can view as an ordered partition in Theorem 20.

We can further restrict Theorem 21 on GLP for local comparators so
that it processes constraints strongest to weakest; that is, it handles the
strongest level first and weaker ones later, and also treats constraints with
equal strengths in an arbitrary order. This strategy has been actually em-
ployed in certain algorithms [3, 5, 11, 12, 26].

An interesting example is the Indigo algorithm [3], which adopts interval
propagation to solve hierarchies of equality and inequality constraints with
LEB. It processes constraints strongest to weakest, and tries to maximally
satisfy each constraint by tightening and propagating bounds on variables.
We can regard this process as GLP for local comparators.

Another example is the Ultraviolet algorithm [5], which computes an LEB
solution of a given hierarchy by first partitioning it into disjoint components
called regions, and then invoking appropriate “subsolvers” such as Blue and
Indigo. In selecting subsolvers for regions, it considers kinds of variables and
constraints as well as the existence of cycles of constraints. Then it further
separates each region according to strengths, and solves resulting sub-regions
strongest to weakest. Thus we can view Ultraviolet as GLP using a local
comparator.
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16 H. HOSOBE AND S. MATSUOKA

6.3. Other Issues

A compositional theory of constraint hierarchies [16] was proposed for the effi-
cient implementation of hierarchical constraint logic programming languages.
It aims at efficiently solving the combination of hierarchies by composing
their solutions which have been computed separately. Therefore, the compo-
sitional theory and ours share the same motivation in a sense. However, its
approach is quite technically different from ours. It first introduces a concept
called BCH (which stands for “Bags for the Composition of Hierarchies”) to
provide constraint problems which are compositional but lack a hierarchical
order of preferential levels. Next, to realize the hierarchy, it integrates a non-
compositional operation called FGH (“Filters, Guards and Hierarchies”) in a
similar way to the refining method. Also, the compositional theory does not
present the analysis of comparators other than locally-predicate-better.

Many existing local propagation algorithms [9, 15, 20] realize incremen-
tality in constraint satisfaction, which is not treated by our theory. These
algorithms efficiently solve modified constraint hierarchies by incrementally
updating dataflow graphs for previous hierarchies. It means that incremen-
tality needs to handle two slightly different hierarchies and consider their
difference in constraint scheduling, which we did not cover in this research.
We feel that treating incrementality will require further knowledge about
properties of specific kinds of constraints.

7. Conclusions and Future Work

In this paper, we proposed generalized local propagation (GLP) as a founda-
tion of algorithms for solving constraint hierarchies. It formalized a way to
express algorithms as constraint scheduling, and presented theorems that sup-
port the refining method and local propagation. Also, we provided a new clas-
sification of comparators based on their difficulties in constraint satisfaction,
and discussed how existing algorithms are related to GLP.

Our future work includes treating the “dynamic” update of ordered par-
titions as well as a single “static” partition used by current GLP. This en-
hancement will be useful to discuss, for example, the SkyBlue algorithm [20],
which uses backtracking to search for solutions. Another important future
direction is to consider the optimization approach. From our recent experience
in an optimization-based nonlinear constraint solver Chorus [13], we feel that
it is difficult to improve accuracy as well as efficiency in the satisfaction of
nonlinear constraint hierarchies. We believe that it will be effective to integrate
constraint scheduling with the optimization approach.

Appendix

Proof of Theorem 13. Assume for contradiction that there exists some θ
that is in π(〈P,≤P 〉) but not in S(H). Since θ �∈ S(H), for some θ′ ∈ Θ,
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θ′
H
< θ holds; that is, for some k ∈ K, we have ∀k′ ∈ K (k′ < k ⇒ θ′

H/k′
∼

θ) ∧ θ′
H/k
< θ. By the definition of P and (1) in Definition 5, we have ∀k′ ∈

K (k′ < k ⇒ θ′
Bk′/k′
∼ θ) ∧ θ′

Bk/k
< θ. As θ must be in π(before(Bk, 〈P,≤P 〉))

and ∀k′ ∈ K (k′ < k ⇒ θ′
Bk′/k′
∼ θ), θ′ ∈ π(before(Bk, 〈P,≤P 〉)) holds by

Definition 11. Then θ′
Bk/k
< θ implies θ �∈ S(Bk, π(before(Bk, 〈P,≤P 〉))), which

is a contradiction to θ ∈ π(〈P,≤P 〉). �

Proof of Theorem 15. By Theorem 13, it suffices to show π(〈P,≤P 〉) ⊇
S(H). Assume for contradiction that there exists some θ that is in S(H)
but not in π(〈P,≤P 〉). Since θ �∈ π(〈P,≤P 〉), for some k ∈ K, we have
θ ∈ π(before(Bk, 〈P,≤P 〉)) and θ �∈ S(Bk, π(before(Bk, 〈P,≤P 〉))); that is,

for some θ′ ∈ π(before(Bk, 〈P,≤P 〉)), θ′
Bk/k
< θ holds. Also, as

·
< is total, for

any k′ ∈ K such that k′ < k, we have θ′
Bk′/k′

< θ ∨ θ′
Bk′/k′
∼ θ ∨ θ′

Bk′/k′

> θ.
Hence we have the following three cases:

1. Case ∃k′ ∈ K (k′ < k ∧ ∀k′′ ∈ K (k′′ < k′ ⇒ θ′
Bk′′/k′′
∼ θ) ∧ θ′

Bk′/k′

< θ):
By the definition of P , we have ∃k′ ∈ K (k′ < k ∧ ∀k′′ ∈ K (k′′ < k′ ⇒
θ′

H/k′′
∼ θ) ∧ θ′

H/k′

< θ), and then θ′
H
< θ holds, which is a contradiction to

θ ∈ S(H).

2. Case ∀k′ ∈ K (k′ < k ⇒ θ′
Bk′/k′
∼ θ): By the definition of P , we have

∀k′ ∈ K (k′ < k ⇒ θ′
H/k′
∼ θ) ∧ θ′

H/k
< θ), and then θ′

H
< θ holds, which is

a contradiction to θ ∈ S(H).

3. Case ∃k′ ∈ K (k′ < k ∧ ∀k′′ ∈ K (k′′ < k′ ⇒ θ′
Bk′′/k′′
∼ θ) ∧ θ′

Bk′/k′

> θ):
Since θ must be in π(before(Bk′ , 〈P,≤P 〉)), θ′ �∈ S(Bk′ , π(before(Bk′ , 〈P,≤P 〉)))
holds, which is a contradiction to θ′ ∈ π(before(Bk, 〈P,≤P 〉)).

All the three cases resulted in contradictions. �

Proof of Theorem 18. Assume for contradiction that there exists some θ
that is in both S(H) and S(H ′) but not in S(H ∪H ′). Then, for some θ′ ∈ Θ,

θ′
H∪H′

< θ holds; that is, for some k ∈ K, we have ∀k′ ∈ K (k′ < k ⇒
θ′

H∪H′/k′
∼ θ) ∧ θ′

H∪H′/k
< θ. By (7) and (8), θ′

H∪H′/k′
∼ θ implies (θ′

H/k′

<

θ ∧ θ′
H′/k′

> θ) ∨ (θ′
H/k′
∼ θ ∧ θ′

H′/k′
∼ θ) ∨ (θ′

H/k′

> θ ∧ θ′
H′/k′

< θ), and by (9),

θ′
H∪H′/k

< θ implies θ′
H/k
< θ ∨ θ′

H′/k
< θ. Hence we have the following two

cases:

1. Case ∃k′ ∈ K (k′ ≤ k∧∀k′′ ∈ K (k′′ < k′ ⇒ θ′
H/k′′
∼ θ∧θ′

H′/k′′
∼ θ)∧θ′

H/k′

<

θ): Then θ′
H
< θ holds, which is a contradiction to θ ∈ S(H).
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18 H. HOSOBE AND S. MATSUOKA

2. Case ∃k′ ∈ K (k′ ≤ k∧∀k′′ ∈ K (k′′ < k′ ⇒ θ′
H/k′′
∼ θ∧θ′

H′/k′′
∼ θ)∧θ′

H′/k′

<

θ): Then θ′
H′
< θ holds, which is a contradiction to θ ∈ S(H ′).

Both of the two cases resulted in contradictions. �

Proof of Lemma 19. Assume for contradiction that there exists some θ′ ∈ Θ

such that θ′ H∼ θ and θ′ �∈ π(〈P,≤P 〉). Then, by Definition 11, it is nec-
essary that, for some B1 ∈ P , θ′ is in π(before(B1, 〈P,≤P 〉)) but not in

S(B1, π(before(B1, 〈P,≤P 〉))). Since we have θ′ H∼ θ and S is rational, θ
B1�∼ θ′

does not hold. Therefore, by the definition of θ′, θ
B1
< θ′ must hold; that

is, for some k1 ∈ K, we have ∀k ∈ K (k < k1 ⇒ θ
B1/k∼ θ′) ∧ θ

B1/k1
<

θ′. This implies that, for some B ∈ P , θ
B/k1
> θ′ holds. As θ must be in

S(B, π(before(B, 〈P,≤P 〉))), we have the following two cases:

1. Case θ′ ∈ π(before(B, 〈P,≤P 〉)) ∧ θ′ �∈ S(B, π(before(B, 〈P,≤P 〉))): Since

θ
B/k1
> θ′ holds, there must exist some k2 ∈ K such that k2 < k1 and

θ
B/k2
< θ′.

2. Case θ′ �∈ π(before(B, 〈P,≤P 〉)): Then, for some B′ ∈ P such that B′ <P

B, θ′ is in π(before(B′, 〈P,≤P 〉)) but not in S(B′, π(before(B′, 〈P,≤P 〉))).
Since, by (4) in Definition 5, θ

B/k1
> θ′ implies ∃c/k1 ∈ B (e(c, θ) > 0),

and also since (11) holds, B′ contains only stronger constraints than k1.

Therefore, there exists some k2 ∈ K such that k2 < k1 and θ
B′/k2

< θ′.

In both of the two cases, θ
B1/k1

< θ′ resulted in that there exist some k2 ∈ K

and B2 ∈ P such that k2 < k1 and θ
B2/k2

< θ′. Therefore, it causes an infinite
sequence k1, k2, . . . such that ki > ki+1, which is a contradiction to that each
ki is a non-negative integer. �

Proof of Theorem 20. By induction on the size of P :

Induction base. If |P | = 0, the proposition holds.

Induction step. Assume that, if |P | < n, the proposition holds. Now let |P | =
n. For any B ∈ terminals(〈P,≤P 〉), θ must be in S(B, π(before(B, 〈P,≤P 〉))).
Therefore, by the induction hypothesis, θ is in S(HB), where HB is the union
of blocks of before(B, 〈P,≤P 〉). Now we assume for contradiction that there

exists some θ′ ∈ Θ such that θ′
HB∪B

< θ; that is, for some k ∈ K, we have

∀k′ ∈ K (k′ < k ⇒ θ′
HB∪B/k′
∼ θ) ∧ θ′

HB∪B/k
< θ. Hence we have the following

two cases:
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SOLUTION METHODS FOR CONSTRAINT HIERARCHIES 19

1. Case ∃k′ ∈ K (k′ ≤ k ∧ ∀k′′ ∈ K (k′′ < k′ ⇒ θ′
HB/k′′
∼ θ ∧ θ′

B/k′′
∼

θ)∧θ′
HB/k′

< θ): Then θ′
HB

< θ holds, which is a contradiction to θ ∈ S(HB).

2. Case ∃k′ ∈ K (k′ ≤ k∧∀k′′ ∈ K (k′′ < k′ ⇒ θ′
HB/k′′
∼ θ∧θ′

B/k′′
∼ θ)∧θ′

B/k′

<
θ): Then, by (4) in Definition 5, for some c/k′ ∈ B, e(c, θ) > 0 must hold.
By (11), HB contains only stronger constraints than k′. Therefore, θ′ HB∼ θ

holds. By Lemma 19, θ′ is also in π(before(B, 〈P,≤P 〉)). As θ′
B
< θ, it is a

contradiction to θ ∈ S(B, π(before(B, 〈P,≤P 〉))).
Both of the two cases resulted in contradictions. Therefore, there never exists
such θ′; that is, θ is in S(HB ∪ B). Since the comparator is rational, θ is in
S(H) by Theorem 18. �
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Notes

1 Practically, it is sometimes necessary to consider a certain degree of computation errors
to judge whether a constraint is satisfied.

2 A constraint hierarchy with an overlap of constraints in such a sense may yield solu-
tions different from ones to a hierarchy without the overlap. It is because the overlapping
constraints will more influence the decision of solutions.

3 When we write ∀c/k ∈ H, we mean that the universal quantifier ∀ is associated only
with c. In other words, k is either free or quantified by another preceding one.
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