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ABSTRACT

Graph drawing is an information visualization technology for il-
lustrating relations between objects. Interactive graph drawing is
often important since it is difficult to statically lay out complex
graphs. For the interactive drawing of general undirected graphs,
we have proposed the high-dimensional approach, which uses static
graph layouts in high-dimensional spaces to dynamically find two-
dimensional layouts according to user interaction. Although the
resulting interactive graph drawing method was found to be fast,
other properties of it are not yet clear. In this paper, we analyze
the high-dimensional approach to further explore its properties.
Specifically, we perform the following two kinds of its analysis:
(1) sensitivity analysis for investigating how the high-dimensional
approach places graph nodes on the two-dimensional plane; (2) em-
pirical analysis for examining the appropriateness of underlying
graph layout methods. The results show that, as an underlying
graph layout method, Kruskal and Seery’s method based on Torg-
erson’s multidimensional scaling method is more appropriate for
the high-dimensional approach than other methods for computing
graph layouts in high-dimensional spaces.

Keywords: Interactive graph drawing, general undirected graphs,
high-dimensional approach.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Interaction techniques

1 INTRODUCTION

Information visualization is often needed to illustrate relations be-
tween objects. Graphs are formal means for expressing such rela-
tions; they represent objects as nodes and such relations as edges.
To visualize information expressed as graphs, researchers have
studied graph drawing [2], which automatically computes appro-
priate positions of nodes and edges. Graph drawing methods are
designed according to classes of graphs that are determined by their
structures. Examples of classes are trees, directed graphs, planar
graphs, and general undirected graphs.

General undirected graphs, whose edges have no directions, are
used to express various information with network structures. Al-
though previous methods including the force-directed approach [2]
have been successful to a certain degree, drawing complex general
undirected graphs with more than hundreds of nodes is still a hard
problem; visualizing the structure of such a graph with a single
static layout is difficult because of its high generality. An effective
means for this problem is interactive graph drawing, which allows
users to visualize graphs interactively.

For this purpose, we have proposed the high-dimensional ap-
proach [5, 6], which uses static graph layouts in high-dimensional
spaces to dynamically find two-dimensional layouts according to
user interaction. To transform such high-dimensional layouts
into two-dimensional ones, it projects them onto appropriate two-
dimensional planes that it determines by constraint satisfaction.
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The resulting interactive graph drawing method was found to be
fast; it efficiently updates two-dimensional graph layouts, and pro-
cesses graphs with more than one thousand nodes within a few tens
of milliseconds.

However, other properties of the resulting method are not yet
clear. Our experiments showed that it follows users’ node dragging
operations by actively moving other closely related nodes, but it has
been unclear why it exhibits such behavior.

In this paper, we analyze the high-dimensional approach to fur-
ther explore its properties. Specifically, we perform the following
two kinds of its analysis:

1. Sensitivity analysis for investigating how a high-dimensional
method places graph nodes on the two-dimensional plane;

2. Empirical analysis for examining the appropriateness of un-
derlying methods of high-dimensional graph layout.

The results show that, as an underlying graph layout method,
Kruskal and Seery’s method based on Torgerson’s multidimen-
sional scaling method is more appropriate for the high-dimensional
approach than Hall’s method [7] and Harel and Koren’s method [4],
both of which are applicable to computing graph layouts in high-
dimensional spaces.

The rest of this paper is organized as follows. Section 2 de-
scribes related work. Section 3 explains the high-dimensional ap-
proach that we analyze. Section 4 provides the sensitivity analysis,
and Section 5 presents the empirical analysis. Finally, Section 6
mentions the conclusions and future work of this research.

2 RELATED WORK

The force-directed approach [2] is often adopted to find layouts of
general undirected graphs. The approach is applicable to draw-
ing graphs of three or higher dimensions. GEM-3D [1] uses a
randomized adaptive spring-embedder algorithm to obtain three-
dimensional graph layouts. In [3], a method is provided that first
finds graph layouts in multidimensional (e.g., four-dimensional)
spaces by using the force-directed approach and then projects the
layouts onto two- or three-dimensional spaces.

Methods using eigenvectors for graph layout are attracting atten-
tion. In [9], an example is presented that finds a graph layout in
the football shape by adopting eigenvectors of Laplacian matrices.
The ACE algorithm [7], which is based on a similar formulation
called Hall’s method, computes layouts of graphs with more than
106 nodes within a minute by using an algebraic multigrid algo-
rithm to speed up eigenvector calculation.

In [4], a method is given that finds layouts of graphs with 105

nodes within a few seconds by first computing graph layouts of rel-
atively high dimensions such as 50 and then by projecting them onto
two-dimensional planes according to principal component analysis.

3 HIGH-DIMENSIONAL METHOD

This section explains the basic high-dimensional method for inter-
active graph drawing [5].

3.1 Multidimensional Graph Layout
The basic high-dimensional method uses Torgerson’s method [8,
10] as its fundamental basis. Given distances between any pairs of
objects, it finds a layout of them that satisfies the distances.
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Torgerson’s method is described below. Assume that we have
distances di j between any pairs i and j of n objects, and also that
they satisfy the distance axioms. First, define ai j as follows:

ai j =
1
2

(
1
n

n

∑
k=1

d2
ik +

1
n

n

∑
k=1

d2
k j −

1
n2

n

∑
k=1

n

∑
l=1

d2
kl −d2

i j

)
.

Next, define an n×n real symmetric matrix A = (ai j). Then A is
diagonalizable as XT AX = Λ for an orthogonal matrix X , where Λ
is a diagonal matrix. With the eigenvalues λk of A and the eigenvec-
tors xk corresponding to λk, such X and Λ are obtained as follows:
Λ has λk as its (k,k) elements, and X = (x1, x2, . . . , xn).

Let P = XΛ1/2, where Λ1/2 is the diagonal matrix with
√

λk
as its (k,k) elements. For an ideal set of di j , each eigenvalue
λk is nonnegative. Torgerson’s method regards each i-th row
(pi1, pi2, . . . , pin) of P as the coordinates of the location of the ob-
ject i in the n-dimensional real Euclidean space. It should be noted
that actual data usually result in occurrences of negative eigenval-
ues. Ordinary applications of Torgerson’s method use only the co-
ordinates corresponding to the first and second largest eigenvalues.

Kruskal and Seery proposed a method that uses Torgerson’s
method to lay out connected general undirected graphs [8] (which
we call the TKS method). It is realized as follows: given a graph,
first compute the graph-theoretic distances (or the lengths of the
shortest paths) between any pairs of its nodes; next, perform Torg-
erson’s method by using the graph-theoretic distances, to obtain a
layout of the nodes on a two-dimensional plane. Although they
assumed two dimensions, the method is easily extensible to multi-
dimensional graph layouts.

3.2 Interactive Graph Drawing
The basic high-dimensional method [5] computes two-dimensional
graph layouts by projecting graph layouts in high-dimensional
spaces onto two-dimensional planes. It handles connected general
undirected graphs, and represents edges as straight lines.

Adopting the TKS method described in the previous subsection,
the basic high-dimensional method computes graph layouts in high-
dimensional spaces. It uses all the coordinates corresponding to
positive eigenvalues. Generally, since the TKS method exploits
graph-theoretic distances in Torgerson’s method, it obtains many
positive eigenvalues, which means that the dimensionalities of the
resulting graph layouts are high. Assume that the eigenvalues λ1,
λ2, . . . are sorted in descending order, and also d ≥ 2, where d is
the number of positive eigenvalues; that is, λ1 ≥ λ2 ≥ ·· · ≥ λd > 0.
Then the position of each node i in the high-dimensional space is
pi = (pi1, pi2, . . . , pid).

The method projects such a d-dimensional graph layout onto
a two-dimensional plane (called the projection plane) as follows.
Consider the projection plane as the plane spanned by two orthonor-
mal d-dimensional vectors e1 and e2. Using these vectors, the two-
dimensional coordinates of node i are obtained as (pi · e1, pi · e2).

For the initial two-dimensional layout, e1 and e2 are initialized
by letting e1 = f1/‖ f 1‖ and e2 = f2/‖ f 2‖, where f1 and f 2 are

the d-dimensional vectors defined as f 1 =
(

λ δ
1 ,0,λ δ

3 ,0, . . .
)

and

f 2 =
(

0,λ δ
2 ,0,λ δ

4 , . . .
)

. Here δ is a parameter, typically set to 1/2,
to adjust how the coordinates affect the two-dimensional layout.
Note that e1 and e2 are orthonormal.

The method enables users to interactively update two-
dimensional graph layouts by dragging a single node at a time. It
is realized by moving projection planes. Since it is not necessary
to modify graph layouts in high-dimensional spaces, the method
provides high efficiency in updating two-dimensional layouts.

The basic idea of the method is that it rotates the projection plane
in the three-dimensional space spanned by the current vectors for

the projection plane and the vector positioning the dragged node.
To compute this, it performs constraint satisfaction by imposing
the constrains that should be satisfied by the vectors spanning the
projection plane.

It is described in detail below. First, constants that work as in-
put are defined. Let e1 and e2 be the current vectors spanning
the projection plane, which are orthonormal. Let i be the index
of the dragged node, and (xi,yi) and (x′i,y′i) be its current and new
two-dimensional coordinates respectively. Then we have (xi,yi) =
(pi · e1, pi · e2) by definition. Also, assume ‖(xi,yi)‖ < ‖pi‖ and
‖(x′i,y′i)‖ < ‖pi‖ (this assumption is not restrictive; see [5]). Also,
let e3 be the vector obtained by the orthonormalization of pi using
e1 and e2, which is determined as e3 = f3/‖ f 3‖, where f 3 is the d-
dimensional vector defined as f3 = pi −xi e1−yi e2. Then we have

‖ f 3‖ > 0 since ‖ f 3‖ =
√
‖pi‖−x2

i −y2
i and ‖(xi,yi)‖ < ‖pi‖.

Next, let e′1 and e′2 be the new vectors spanning the projection
plane. These vectors are considered to be in the three-dimensional
space spanned by e1, e2, and e3. Then they can be expressed with
six variables α1, α2, α3, β1, β2, and β3 as e′1 = α1 e1 +α2 e2 +α3 e3
and e′2 = β1 e1 +β2 e2 +β3 e3. Also, let r be the vector indicating
the rotation axis of the projection plane. Then it can be represented
with two variables γ1 and γ2 as r = γ1 e1 + γ2 e2.

Now, using these constants and variables, the following eight
constraints are imposed: ‖e′1‖ = 1, ‖e′2‖ = 1, e′1 · e′2 = 0, ‖r‖ = 1,
r · e′1 = r · e1, r · e′2 = r · e2, pi · e′1 = x′i, and pi · e′2 = y′i. The
first three constraints mean that e′1 and e′2 are orthonormal. The
next three constraints indicate that r is a unit vector, and that e′1
and e′2 are the rotations of e1 and e2 around r. The last two con-
straints imply that the coordinates (x′i,y′i) are obtained by project-
ing pi onto the new projection plane. These eight constraints can
be efficiently solved by a basic numerical method for simultaneous
nonlinear equations such as Newton’s method.

3.3 Example
Next, an example of performing the high-dimensional approach is
presented. The graph used here is the one obtained by modify-
ing the graph called erdos1graph, which was produced in the
Erdös Number project.1 This project is collecting data on coau-
thorships of papers starting from Paul Erdös, a mathematician who
passed away in 1996. erdos1graph is the graph whose nodes are
the coauthors of the papers written by Erdös (which exclude Erdös
himself), and whose edges connect the nodes whose correspond-
ing persons have collaboratively written one or more papers (which
may be irrelevant to Erdös). Therefore, this graph exhibits a hu-
man social network in the real world. This example uses the graph
that excludes, from the original erdos1graph, the 46 nodes and
4 edges that do not belong to the maximum connected compo-
nent (which we call the modified erdos1graph). The modified
erdos1graph consists of 463 nodes and 1,547 edges.

Figure 1(a) illustrates the initial two-dimensional layout of the
modified erdos1graph obtained by the above method. Next,
Figure 1(b) depicts the graph obtained by dragging to the right side
a node that was initially located in the center of the layout and that
is connected by many edges (the circle indicates the dragged node).

Figure 1(c) shows the graph that is zoomed in around the dragged
node and to which the name labels of the persons corresponding
to the nodes are added. The dragged node corresponds to Frank
Harary, a researcher on Graph Theory, who has the second most
coauthorships among the coauthors of Erdös (that is, its node has
the second most edges in erdos1graph.) In the lower part of
Figure 1(c), there is a node corresponding to William T. Tutte, who
proposed a classical graph layout method [2]. Tutte has only 4
coauthorships with Erdös’ coauthors, and Harary is one of them.
Therefore, Tutte’s node was placed close to Harary.

1http://www.oakland.edu/enp/
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(a) (b)

(c)

Figure 1: An application to a social network.

4 SENSITIVITY ANALYSIS

In this section, we explore the high-dimensional approach by
performing sensitivity analysis. This analysis investigates how
the high-dimensional approach places graph nodes on the two-
dimensional plane. We specifically analyze the basic method,
which was presented in the previous section, as an instance of the
high-dimensional approach.

Consider again the same high-dimensional graph layout as in
Subsection 3.2, and also assume that it is projected onto the two-
dimensional plane, and that the user drags the node i in the same
way. For each node j, let (x j,y j) and (x′j,y′j) be its positions on the
initial and updated projection planes respectively.

Now we consider how the coordinates of each node are changed
by the dragging. For the x-coordinate, we can derive the following:

x′j = x jα1 +y jα2 +(‖p j‖cos θ j)α3, (1)

where θ j indicates the angle between p j and f3 (and hence p j · f3 =
‖p j‖‖ f 3‖cos θ j holds). Note that we can obtain a similar equation
for the y-coordinate.

Let us further examine (1). We can classify the constants and
variables in (1) into four categories:

1. Constant p j that is defined by the high-dimensional graph lay-
out;

2. Constants x j and y j that are determined when the initial pro-
jection plane is given;

3. Constant θ j that is settled when the user decides to drag
node i;

4. Variables α1, α2, and α3 that are repeatedly updated while the
user is dragging the node i.

In (1), the term (‖p j‖cosθ j)α3 is the most important, since θ j
depends on both the nodes i and j (by contrast, p j , x j, and y j do
not depend on the node i, and α1, α2, and α3 affect all the nodes
in the same way). We can expect that the magnitude of α3 tends
to become large when the user drags the node i far from the initial
position. This is because the contribution of the term ‖ f 3‖α3 is
significant in satisfying x′i = xiα1 + yiα2 + ‖ f 3‖α3 (note that α1,
α2, and α3 range between −1 and 1 since α2

1 +α2
2 +α2

3 = 1).
Let us turn our attention to θ j, which is the angle between p j

and f 3. Since f3 is obtained by the orthonormalization of pi using
e1 and e2, we can regard f3 as having a similar direction to pi.
Therefore, we can approximate cosθ j by using cosθi j , where θi j
denotes the angle between p j and pi.

We conclude that in general, node j is positively sensitive to the
dragging of the node i if ‖p j‖cos θi j is large.

5 EMPIRICAL ANALYSIS

In this section, we empirically analyze actual graph layout methods
to see if they are appropriate for the high-dimensional approach.

5.1 The TKS Method
First, we perform an experiment to analyze the TKS method. In this
experiment, we use the modified erdos1graph as the test data.
We consider the case of dragging Harary’s node (which is regarded
as node i), and see the ‖p j‖, cosθi j, and ‖p j‖cosθi j of each node j.

Figures 2(a1)–(a3) show the results of this experiment. The
graph-theoretic distances are calculated from Harary’s node (and
therefore, the distance for Harary’s node is zero). In this figure, the
diamond marks indicate the results of Tutte’s node.

From these results, we can observe the following:

• Figure 2(a1) shows that Harary’s node is close to the origin
in the high-dimensional space. Perhaps this is because it has
many edges.

• Figure 2(a2) indicates that nodes j with short graph-theoretic
distances to Harary’s node result in large cosθi j .

• Figure 2(a3) suggests that nodes j with short graph-theoretic
distances to Harary’s node result in large ‖p j‖cos θi j. More
importantly, Tutte’s node has larger ‖p j‖cos θi j. This means
that the high-dimensional approach works well for indicating
the strong relationship between Tutte and Harary.

5.2 Comparison with Other Methods
Next, we compare the TKS method with Hall’s method [7] and
Harel and Koren’s method [4] (which we call the HK method).
Hall’s method and the HK method are known to work well for very
large graphs with mesh structures [4, 7]. Since these methods can
compute high-dimensional graph layouts, it is interesting to see if
they can be applicable to our high-dimensional approach.

Figure 3(a) depicts the initial two-dimensional graph layout ob-
tained by applying Hall’s method to the high-dimensional approach.
Figures 2(b1)–(b3) show the results of performing the same exper-
iment on Hall’s method as in the previous subsection. The results
suggest that Hall’s method is completely inappropriate to the high-
dimensional approach.

Figure 3(b) illustrates the initial two-dimensional graph layout
obtained by applying the HK method to the high-dimensional ap-
proach. Figures 2(c1)–(c3) give the results of conducting the same
experiment on the HK method as in the previous subsection. Note
that Tutte’s node exhibits small ‖p j‖cos θi j . This means that the
HK method does not perform well for the high-dimensional ap-
proach.

From these results, we can conclude that the TKS method is bet-
ter than both Hall’s method and the HK method when used in the
high-dimensional approach.
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Figure 2: Results of (a1)–(a3) the TKS, (b1)–(b3) Hall’s, and (c1)–(c3) the HK methods.

(a) (b)

Figure 3: Graph layouts based on (a) Hall’s and (b) the HK methods.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the high-dimensional approach to inter-
active drawing of general undirected graphs, by performing sen-
sitivity and empirical analysis. The results showed that the TKS
method is more appropriate for the high-dimensional approach than
Hall’s and the HK methods.

A future direction of our research is to search for methods other
than the TKS that are appropriate to the high-dimensional approach.
Our plan also includes extending our prototype graph drawing sys-
tem by further enhancing its display and user interaction functions.
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