
1

Speculative Constraint Processing for
Hierarchical Agents

Hiroshi Hosobe a,∗, Ken Satoh a, Jiefei Ma b,
Alessandra Russo b, and Krysia Broda b

a National Institute of Informatics, Japan
E-mail: {hosobe,ksatoh}@nii.ac.jp
b Imperial College London, United Kingdom
E-mail: {jm103,ar3,kb}@doc.ic.ac.uk

Speculative computation is an effective means for solv-
ing problems with incomplete information in multi-
agent systems. It allows such a system to compute
tentative solutions by using default knowledge about
agents even if communications between agents are de-
layed or fail. Previously we have proposed a logical
framework for speculative constraint processing for
master-slave multi-agent systems. In this paper, we ex-
tend the framework to support more general multi-
agent systems that are hierarchically structured. We
provide an operational model for the framework and
present a prototype implementation of the model.

Keywords: multi-agent systems, speculative computa-
tion, logic programming, constraints

1. Introduction

Multi-agent systems typically rely on communi-
cations between agents. Most of multi-agent sys-
tems are designed to work well as long as there is
no problem with communications between agents.
In practice, however, it is often difficult to guaran-
tee efficient and reliable communications between
agents. If a multi-agent system is deployed on an
unreliable network such as the Internet, or if a
multi-agent system requires involvement of human
users, communications might be largely delayed or
even fail.

Speculative computation is an effective means for
coping with such problems in multi-agent systems

*Corresponding author: Hiroshi Hosobe, National Insti-
tute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo

101-8430, Japan.

[2,5,6,11,15,16,17,18,19]. It allows a multi-agent
system to compute tentative solutions if commu-
nications between agents are delayed or fail. This
speculative computation is done by using default
knowledge about other agents instead of waiting
for their answers.

Previously we have proposed a logical frame-
work for speculative constraint processing for
multi-agent systems [2]. The framework allowed
agents to communicate by means of constraints
that are powerful in modeling problems. In addi-
tion, it supported the revision of previous answers
that is useful for modeling complex problems in-
volving, e.g., human users. However, the frame-
work was limited to master-slave multi-agent sys-
tems.

In this paper, we extend our previous frame-
work to support more general multi-agent sys-
tems that are hierarchically structured. Unlike the
previous framework, the extended framework al-
lows speculative computation agents to communi-
cate with other speculative computation agents.
Therefore, with this extension, we can model more
complex problems as hierarchical multi-agent sys-
tems. For example, this extension allows us to
model a multi-agent planning system where the
root agent speculatively executes the entire plan-
ning task while other personal agents also spec-
ulatively perform the management of the corre-
sponding human users. It should be noted that
such a system with multiple speculative computa-
tion agents cannot be modeled as a master-slave
multi-agent system.

Our framework can also be regarded as a model
and a mechanism for distributed problem solving.
Knowledge about a problem is hierarchically dis-
tributed over a set of agents; some agents might
be specialized in particular tasks, and other agents
might be human users. Since the whole problem
cannot be solved by a single agent, these agents
must cooperatively solve the problem by exchang-
ing questions and answers represented as con-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

2 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

straints. Since our framework supports speculative
computation, an agent that has sent a question to
one of its child agents does not need to wait for
the answer of the child agent; it speculatively con-
tinues its computation by using default knowledge
about the child agent.

Our ultimate goal is to provide a powerful
framework for speculative computation that re-
alizes effective and efficient information process-
ing in distributed multi-agent systems. For this
purpose, we need to allow complex structures of
agents as well as to enhance the power of indi-
vidual agents. Although our previous framework
for master-slave multi-agent systems achieved a
powerful constraint-based mechanism for handling
individual agents, its limitation on the structure
of agents posed a major difficulty. Thus our new
framework for hierarchical multi-agent systems
marks an incremental but essential advance toward
our ultimate goal.

Also, our technical contributions in this paper
are multifold:

– we present a logical framework for hierarchical
multi-agent systems by extending the formu-
lation and semantics of our previous master-
slave framework;

– we provide an operational model of hierarchi-
cal multi-agent systems by modifying our pre-
vious master-slave model;

– we formally prove the correctness of the oper-
ational model in the sense of both soundness
and completeness;

– we present a prototype implementation of the
operational model.

The rest of this paper is organized as follows. Af-
ter describing related work in Section 2, we provide
the formulation and semantics of our extended
framework in Section 3. Next, we present the oper-
ational model for the extended framework in Sec-
tion 4, and the prototype implementation of the
model in Section 5. In Section 6, we show an ex-
ample of executing a multi-agent system with our
implementation. After discussing our work in Sec-
tion 7, we describe conclusions and future work in
Section 8.

2. Related Work

Speculative computation has been studied in
several fields of computer science [1]. An exam-

ple in the field of logic programming is the use
of speculative parallelism in the Parlog language
[3]. Its aim is to exploit the speculative parallelism
to speed up the execution of parallel search algo-
rithms such as the parallel A∗. Although our work
was motivated by such previous work, we are par-
ticularly interested in the use of speculative com-
putation for multi-agent systems.

Originally in [18], we proposed a logical frame-
work for speculative computation for master-slave
multi-agent systems, which we realized by exploit-
ing abduction. Later we extended it to support
more general multi-agent systems that are hier-
archically structured [19]; this work also enabled
agents to revise their answers (i.e. belief revision),
which is caused by the speculative computation of
other agents. We also proposed a framework for
combining speculative computation and abduction
[16]. Sakama et al. proposed an alternative logical
multi-agent framework that translates a program
by attaching time stamps to predicates [15]. In-
oue and Iwanuma proposed a different approach to
speculative computation that uses a consequence-
finding procedure [6]. It should be noted that all
these studies were restricted to yes/no questions.

To handle more general questions, we proposed
a framework for speculative constraint process-
ing (firstly in [17], and also in its journal ver-
sion [5]). In the framework, constraints facilitated
the modeling of more general problems. Later we
extended the constraint-based framework to sup-
port the revision of answers [2]. However, both
of these frameworks were limited to master-slave
multi-agent systems.

Constraint programming languages such as
AKL [8] and Oz [20] perform a kind of speculative
computation. AKL allows local speculative vari-
able bindings in a guard of each clause until one
of guards succeeds, and Oz can control multiple
computation spaces, each of which represents an
alternative path of constraint processing. As far as
we understand, however, speculative computation
used in these languages is mainly motivated for or-
parallel computing where multiple paths of com-
putation are executed in parallel until one of the
paths succeeds eventually. On the other hand, we
regard speculative computation as default compu-
tation where most plausible paths of computation
are executed. Moreover, they do not consider the
usage of speculative computation for incomplete
communication environments. However, we believe

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 3

that AKL and Oz could be good platforms for the
implementation of speculative computation using
defaults.

There have been studies on the extension of logic
programming to multi-agent systems (e.g. [10]).
Unlike those studies, our work is focused on spec-
ulative computation for multi-agent systems.

Researchers have been studying agent-based
frameworks for processing constraint satisfac-
tion problems (e.g. [12,22]) and similar problems
(e.g. [4,21]). Our framework is more computation-
ally complex than these frameworks, since our
framework allows programmers to dynamically
generate such problems and also control specula-
tive computation due to the power of constraint
logic programming.

In the field of artificial intelligence, there has
been much research on non-monotonic reasoning
such as default logic [14], abductive logic program-
ming [9], and multi-agent non-monotonic reason-
ing [13]. Unlike such research, our work is focused
on the use of default knowledge to enable specula-
tive computation in multi-agent systems.

3. Hierarchical Multi-Agent System

This section provides a formulation and a se-
mantics of hierarchical multi-agent systems.

3.1. Formulation

We first formulate multi-agent systems. In
this paper, we restrict our attention to a tree-
structured composition of agents that we call an
agent hierarchy .

Definition 1 (agent hierarchy). An agent hierar-
chy H is a tree consisting of a set of nodes called
agents. Let root(H) be the root node of H, called
the root agent . Let int(H) be the set of all the non-
leaf nodes of H, each called an internal agent . Let
ext(H) be the set of all the leaf nodes of H, each
called an external agent . Given an internal agent
M , let chi(M,H) be the set of all the child nodes
of M , each called a child agent of M . Given a non-
root agent S, let par(S, H) be the parent node of
S, called the parent agent of S.

By convention, we use either M or S (possibly
with primes and subscripts) to indicate an agent.
Also, when we refer to specific agents, we adopt r
as the root agent, another small letter (e.g. a and
b) as a non-root internal agent, and a small letter
with a prime (e.g. a′ and b′) as an external agent.

Example 1. Let H be the tree consisting of nodes
r, a, b, a′, and b′ and parent-to-child edges r → a,
a → a′, r → b, and b → b′. Then H can be re-
garded as the agent hierarchy with agents r, a,
b, a′, and b′, satisfying root(H) = r, int(H) =
{r, a, b}, ext(H) = {a′, b′}, chi(r,H) = {a, b},
par(a,H) = par(b,H) = r, chi(a, H) = {a′},
par(a′,H) = a, chi(b, H) = {b′}, and par(b′,H) =
b.

We restrict internal agents to artificial agents
that are based on a variant of constraint logic
programming (CLP) [7]. Specifically, each internal
agent is associated with a specification that is a
constraint logic program with default rules. Rules
in constraint logic programs as well as default rules
consist of atoms and constraints. Atoms are cate-
gorized into askable and non-askable atoms; intu-
itively, an agent treats an askable atom as a ques-
tion that should be posed to one of its children,
and a non-askable atom as a piece of knowledge
that should be acquired from its program.

Definition 2 (askable/non-askable atom). Given an
agent hierarchy H and an agent M ∈ int(H),
an atom is either p(X1, X2, . . . , Xn)@S called an
askable atom, or p(t1, t2, . . . , tn)@M called a non-
askable atom, where S ∈ chi(M, H), p is an n-ary
predicate, each Xi is a variable, and each ti is a
term. Given an askable atom Q@S, the set of the
variables that appear in Q is written var(Q).

Definition 3 (specification of an agent). Given an
agent hierarchy H and an agent M ∈ int(H), a
specification FM of M is a pair 〈∆M ,PM 〉 with
the following ∆M and PM .

– ∆M is a set of rules in the form

Q@S ← C ||

each called a default rule w.r.t. Q@S, where
S is a child agent of M , Q@S is an askable
atom, and C is a set of constraints.

– PM is a constraint logic program that is a set
of rules R in the form

H ← C ||B1, B2, . . . , Bn

where:

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

4 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

∗ H is a non-askable atom called the head of
R and written head(R);
∗ C is a set of constraints written const(R);
∗ each Bi is either an askable or non-askable

atom, and the sequence B1, B2, . . . , Bn is
called the body of R and written body(R).

A multi-agent system is an agent hierarchy, each
of whose internal agents is associated with a spec-
ification.

Definition 4 (multi-agent system). A multi-agent
system is a pair 〈H,F〉, where H is an agent
hierarchy, and F is a set of specifications
FM = 〈∆M ,PM 〉 of M ∈ int(H), i.e. F =
{〈∆M ,PM 〉}M∈int(H).

We use the following room reservation problem
as a running example.

Example 2. Let H be the agent hierarchy given in
Example 1. Let F = {Fr, Fa, Fb} with the follow-
ing specifications of r, a, and b.

– Fr = 〈∆r,Pr〉 where

∗ ∆r contains the following default rules:
available(D)@a← D ∈ {1, 2, 3} ||
available(D)@b← D ∈ {1, 2, 3} ||
∗ Pr is the following constraint logic program:

reserve(R,L, D)@r ←
R = twin room, L = [a, b] ||
available(D)@a, available(D)@b

reserve(R,L, D)@r ←
R = single room, L = [a] ||
available(D)@a, unavailable(D)@b

reserve(R,L, D)@r ←
R = single room, L = [b] ||
unavailable(D)@a, available(D)@b

– Fa = 〈∆a,Pa〉 where

∗ ∆a contains the following default rules:
free(D)@a′ ← D ∈ {1, 2} ||
busy(D)@a′ ← D ∈ {3} ||
∗ Pa is the following constraint logic pro-

gram:
available(D)@a← || free(D)@a′

unavailable(D)@a← || busy(D)@a′

– Fb = 〈∆b,Pb〉 where

∗ ∆b contains the following default rules:
free(D)@b′ ← D ∈ {2} ||
∗ Pb is the following constraint logic program:

available(D)@b← || free(D)@b′

unavailable(D)@b← || busy(D)@b′

Then 〈H,F〉 is a multi-agent system.

In this example, there are two human users rep-
resented as external agents a′ and b′, whose avail-
ability is maintained by internal agents a and b
respectively. Intuitively, the root agent r specula-
tively reserves a twin or single room for a′ and/or
b′ by using the default rules and by asking a and
b about the availability of a′ and b′; then a and b
speculatively compute the availability of a′ and b′

by using their more detailed default rules.

3.2. Semantics

Next, we present the semantics of hierarchical
multi-agent systems. We define it by extending the
semantics for our previous framework [2], which is
based on the CLP scheme [7].

We first define a goal that is a question posed
to a multi-agent system.

Definition 5 (goal). Let 〈H,F〉 be a multi-agent
system. A goal G is “← C ||B1, B2, . . . , Bn”, where
C is a set of constraints called the constraints of
G, and each Bi is either an askable or non-askable
atom. The sequence B1, B2, . . . , Bn is called the
body of G.

The belief state of a multi-agent system gives
the set of answers and default rules about external
agents that should be used to obtain theoretical
solutions to the entire system.

Definition 6 (belief state). Let 〈H,F〉 be a multi-
agent system with F = {〈∆M ,PM 〉}M∈int(H). Let
AH be a set of most recent answers of the external
agents, each of which is a rule “Q@S ← C||” with
S ∈ ext(H). The belief state of 〈H,F〉 w.r.t. AH ,
written bel(AH , 〈H,F〉), is

bel(AH , 〈H,F〉) = AH ∪ {“Q@S ← C ′||” |

S ∈ ext(H) ∧ “Q@S ← C ′||” ∈ ∆par(S,H) ∧

¬∃C, “Q@S ← C||” ∈ AH}.

As in the ordinary CLP scheme, a solution to the
entire multi-agent system is obtained by a deriva-
tion of a goal that is a sequence of reductions.

Definition 7 (reduction). Let 〈H,F〉 be a multi-
agent system with F = {〈∆M ,PM 〉}M∈int(H),
and AH be a set of most recent answers of
the external agents. A reduction of a goal “←
C ||B1, B2, . . . , Bn” w.r.t. 〈H,F〉, AH , and Bi is a
goal “← C ′ ||GS” such that:

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 5

– there exists a rule R in (
∪

M∈int(H) PM) ∪
bel(AH , 〈H,F〉) such that C ∧ (Bi =
head(R)) ∧ const(R) is consistent;1

– C ′ = C ∧ (Bi = head(R)) ∧ const(R);
– GS = B1, . . . , Bi−1, body(R), Bi+1, . . . , Bn.

Definition 8 (derivation). Let 〈H,F〉 be a multi-
agent system with F = {〈∆M ,PM 〉}M∈int(H) and
Mroot = root(H), and AH be a set of most recent
answers of the external agents. A derivation of a
goal G = “←||Qinit@Mroot” w.r.t. 〈H,F〉 and AH

is a sequence of reductions “←||Qinit@Mroot”, . . . ,
“← C||” w.r.t. 〈H,F〉 and AH , where an atom in
the body of the current goal is selected in each
reduction. C is called an answer w.r.t. 〈H,F〉, AH ,
and G.

4. Operational Model

This section provides the operational model of
hierarchical multi-agent systems defined in the
previous section. After an overview of the opera-
tional model, we present its data structures, pro-
cedure, and correctness.

4.1. Overview

This operational model is an extension of the
model that we previously constructed for master-
slave multi-agent systems [2]. Since a hierarchical
multi-agent system can be regarded as a hierarchy
of master-slave multi-agent systems, the main task
of the extension is to appropriately connect such
master-slave multi-agent systems in a hierarchical
manner. For this purpose, we made to the previous
model a modification related to the treatment of
returned answers and finished processes.

As in the previous model, the execution of an
agent is based on two kinds of phases: process re-
duction phases and fact arrival phases. A process
reduction phase is a normal execution of a pro-
gram in an internal agent, and a fact arrival phase
is an interruption phase that is invoked when an
answer arrives from a child agent.

A computational state in an internal agent is
represented as a process. Processes are created

1If Bi is unifiable with head(R), Bi = head(R) repre-
sents the conjunction of the constraints that equate the
arguments of Bi with those of head(R); otherwise, Bi =

head(R) represents false.

Fig. 1. Handling an askable atom Q@S in a process reduc-
tion phase.

when a choice point of computation, such as case
splitting, default handling, and answer arrival, is
encountered. Figures 1–4 illustrate how processes
are updated. In these trees, each node represents
a process, but we only show constraints associ-
ated with the process. Each root node represents
a constraint for the original process, and the other
nodes represent the constraints added to the de-
scendant processes. Note that we specify true for
non-root nodes without added constraints, since
the addition of the true constraint does not change
the solutions to existing constraints. The leaves of
the process trees represent the current processes.
In other words, the processes that are not at the
leaves have been deleted.

Figure 1 shows a situation where an agent treats
an askable atom Q@S whose answer has not yet
arrived in a process reduction phase. In this case,
the current process represented by C is split into
two different kinds of processes: a process using
the default Cd, called a default process,2 and the
current process C itself, called an original process,
that is suspended at this point.

If there are multiple default rules for Q@S, we
will have more than one default process, but still
only one original process. The reason for suspend-
ing such a process (which is kept in memory) is
that, in case of a contradictory revision of the de-
fault or a later arrival of an alternative answer, the
intermediate result of the suspended process can
be reused.

Figure 2 illustrates a situation where the agent
receives a first answer to Q@S, expressed by the
constraint Cf , after reductions of the default pro-
cesses (represented by the dashed lines). Then the
default and original processes are updated as fol-
lows:

– each default process is reduced to two differ-
ent kinds of processes, i.e. a process includ-
ing Cf , and the current process itself that is
suspended at this point;

2We assume for simplicity that there is only one default

rule for Q@S.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

6 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

Fig. 2. Handling a first answer Cf for Q@S.

Fig. 3. Handling an alternative answer Ca for Q@S.

Fig. 4. Handling a revised answer Cr for Q@S.

– the original process is also reduced to two dif-
ferent kinds of processes, i.e. a process includ-
ing Cf ∧ ¬Cd, and the original process sus-
pended at this point.

Figure 3 depicts a situation where the agent re-
ceives an alternative answer to Q@S whose con-
straint is Ca. We need to update processes basi-
cally in the same way as in handling the first an-
swer Cf , without affecting the processes that treat
Cf .

Figure 4 shows a situation where the agent re-
ceives an answer to Q@S that revises the first an-
swer Cf to Cr. In our operational model, a revised
answer is always narrower than its previous an-
swer, i.e. Cr entails Cf .3 Therefore, we only need
to update the processes that treat Cf .

3It should be noted that an answer that is not narrower
than a previous answer can be represented as an alternative

answer.

4.2. Data Structures

We now define necessary data structures for
the operational model. A process identifier is an
element of a countably infinite set {p1, p2, . . .}.
An answer identifier is an element of {os, on} ∪
{d1, d2, . . .} ∪ {p1, p2, . . .}, where {d1, d2, . . .} is a
countably infinite set, and {os, on}, {d1, d2, . . .},
and {p1, p2, . . .} are disjoint. A labeled askable
atom is a pair 〈Q@S, os〉, 〈Q@S, on〉, 〈Q@S, di〉, or
〈Q@S, pi〉, where Q@S is an askable atom, and os,
on, di, and pi are answer identifiers.

An answer is a data structure sent by an agent
to its parent agent to reply to a question.

Definition 9 (answer). Given a multi-agent sys-
tem 〈H,F〉 and an agent M ∈ int(H), an an-
swer to M is a quadruple 〈Q@S,AID , C,AIDprev〉,
where S ∈ chi(M, H), Q@S is an askable
atom, AID is an answer identifier, C is a
set of constraints, and AIDprev is either nil
or a different answer identifier from AID . If
AIDprev = nil, this answer is called a new an-
swer ; otherwise, it is called a revised answer . For
any pair of answers 〈Q@S,AID , C,AIDprev〉 and
〈Q@S,AIDprev, Cprev,AID ′〉 (which is sometimes
called the previous answer) with AIDprev 6= nil, C
must entail Cprev.

A process is a data structure that holds a (pos-
sibly intermediate) result of computing an answer.
A single agent maintains a set of processes to keep
different ways of possible computation. In the op-
erational model, processes are divided into two cat-
egories, i.e. ordinary and finished processes. Al-
though they are always distinguished, they have a
common structure defined below.

Definition 10 (process). Given a multi-agent sys-
tem 〈H,F〉 and an agent M ∈ int(H), a process P
of M is a quintuple 〈PID , C,GS ,WA,AA〉, where
PID is a process identifier written pid(P), C is a
set of constraints written pconst(P), GS is a set
of atoms written gs(P), WA and AA are sets of
labeled askable atoms written wa(P) and aa(P)
respectively. If wa(P) = ∅, P is said to be active,
and otherwise suspended .

An answer entry is a data structure that keeps
an answer and the identifiers of the processes using
the answer.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 7

Fig. 5. Workflow of an internal agent.

Definition 11 (answer entry). Given a multi-
agent system 〈H,F〉 and an agent M ∈ int(H),
an answer entry A for M is a quadruple
〈Q@S,AID , C,UPS 〉, where S ∈ chi(M, H), Q@S
is an askable atom written aq(A), AID is an an-
swer identifier written aid(A), C is a set of con-
straints written aconst(A), and UPS is a set of
process identifiers written ups(A). If aid(A) is ei-
ther os or on, A is called an original answer entry;
if aid(A) is di, A is called a default answer entry;
otherwise, A is called an ordinary answer entry.

An original answer entry is associated with ei-
ther os or on. Intuitively, an entry with os records
processes from which processes using default an-
swer entries were speculatively created; by con-
trast, an entry with on keeps processes from which
processes using ordinary answer entries were cre-
ated.

4.3. Procedure

Now we present the procedure of the operational
model. The main routine illustrated in Figure 5
and described in Figure 6 processes an internal
agent M . It consists of two parts. The first part
creates answer entries used for speculative compu-
tation. The second part is the main loop that per-
forms one of the following three operations. The
first operation creates a process for a newly asked
question. The second and third operations invoke
a fact arrival phase and a process reduction phase
respectively.

The process reduction phase presented in Fig-
ure 7 treats an active ordinary process P by the
normal execution of its constraint logic program.
This phase carries out one of the following three
operations. The first operation changes P into a
finished one if P has an empty goal. The second

operation reduces P w.r.t. a non-askable atom L
in a similar way to the CLP scheme. The third
operation reduces P w.r.t. an askable atom Q@S
by using either the ordinary or the default answer
entries corresponding to Q@S.

The fact arrival phase given in Figure 8
updates the related answer entries and pro-
cesses when the agent M receives an answer
〈Q@S,AID , Cp,AIDprev〉 from a child agent S.
This phase executes one of the following two op-
erations. The first operation treats a new answer;
it reflects the returned constraints Cp by creating
new processes from the processes that are referred
by the default and original answer entries corre-
sponding to Q@S. The second operation handles
a revised answer; it adds Cp to the processes using
the previous answer whose identifier is AIDprev.

4.4. Correctness

We show the correctness of the operational
model presented in this section. For this purpose,
we begin with two lemmas that hold for local parts
of hierarchical multi-agent systems called master-
slave restrictions.

Definition 12 (master-slave restriction). Given
a multi-agent system 〈H, F〉 with F =
{〈∆M ′ ,PM ′〉}M ′∈int(H) and an agent M ∈ int(H),
the master-slave restriction of 〈H,F〉 to M , writ-
ten msres(M, 〈H,F〉), is the multi-agent system
〈HM , {〈∆M ,PM 〉}〉, where HM is the agent hier-
archy consisting of M as its root and chi(M, H) as
the child agents of M .

The first lemma shows the soundness of master-
slave restrictions of hierarchical multi-agent sys-
tems in a similar way to the theorem on the sound-
ness of master-slave multi-agent systems [2].

Lemma 1 (soundness of the master-slave re-
striction). For any multi-agent system 〈H,F〉,
any agent M ∈ int(H), any initial goal
“←||Qinit@M”, any execution of M , and any
process P of M , there exists a sequence of re-
ductions “←||Qinit@M”, . . . , “← C ||GSo ∪
gs(P)” w.r.t. msres(M, 〈H,F〉) and AP such that
πvar(Qinit)(pconst(P)) entails πvar(Qinit)(C), where

GSo = {Q@S | 〈Q@S, os〉 ∈ wa(P) ∨

〈Q@S, on〉 ∈ wa(P)}

AP = {“Q@S ← C ′||” |

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

8 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

foreach askable atom Q@S that appears in PM do
create original answer entries 〈Q@S, os, true, ∅〉 and 〈Q@S, on, true, ∅〉;
foreach default rule “Q@S ← Cd||” ∈ ∆M do

create a default answer entry 〈Q@S, d, Cd, ∅〉;

repeat
if a question Qinit was asked by the parent then

PID := a new process ID;
create an ordinary process 〈PID , true, {Qinit@M}, ∅, ∅〉;

else if an answer 〈Q@S,AID , Cp,AIDprev〉 arrived from a child then
invoke a fact arrival phase for 〈Q@S,AID , Cp,AIDprev〉;

else if there is an active ordinary process P then
invoke a process reduction phase for P ;

until M is terminated ;

Fig. 6. Processing an internal agent M .

there exists an answer entry

〈Q@S,AID , C ′,UPS 〉 for M

such that 〈Q@S,AID〉 ∈ aa(P)},
and πV (C) indicates the projection of a constraint
C onto a set V of variables.
Proof. See Appendix.

Intuitively, Lemma 1 states that, for any process
P of an internal agent M , there exists a sequence of
reductions w.r.t. the master-slave restriction to M
that yields a constraint entailed by the constraint
of P . We prove this lemma by induction on the
number of steps for the execution of M . At the
induction step, we show that, for any execution
consisting of n + 1 steps, we can construct such a
sequence of reductions from that for an execution
with n steps.

The second lemma gives the completeness of
master-slave restrictions of hierarchical multi-
agent systems.

Lemma 2 (completeness of the master-slave re-
striction). For any multi-agent system 〈H,F〉,
any agent M ∈ int(H), any initial goal
“←||Qinit@M”, any execution of M , any valua-
tion θ of var(Qinit) that satisfies the answer ob-
tained from some derivation of “←||Qinit@M”
w.r.t. msres(M, 〈H,F〉) and AM , where

AM = {“Q@S ← C ′||” |

there exists an ordinary answer entry

〈Q@S,AID , C ′,UPS 〉 for M},
there exist an active process P of M and a se-
quence of reductions “← pconst(P) || gs(P)”, . . . ,

“← C||” w.r.t. msres(M, 〈H,F〉) and AM such
that θ satisfies C.
Proof. See Appendix.

Intuitively, Lemma 2 says that, for any valuation
θ obtained from some derivation w.r.t. the master-
slave restriction of an internal agent M , there ex-
ists an active process P of M that will derive an
answer including θ. We prove this lemma by in-
duction on the number of steps for the execution
of M . At the induction step, we show that, for any
execution consisting of n+1 steps, we can find such
an active process by comparing it with a “reduced”
execution consisting of n steps.

We prove two theorems to show that hierarchical
multi-agent systems eventually obtain all and only
correct solutions. This state is called hierarchical
stability.

Definition 13 (hierarchical stability). An execution
of a multi-agent system 〈H,F〉 is hierarchically
stable if and only if the following conditions hold:

– for any agent M ∈ int(H), there exists no
active ordinary process P of M ;

– for any agent M ∈ int(H) and any ac-
tive finished process P of M , there exists
no default answer entry Ad for M such that
〈Q@S, aid(Ad)〉 ∈ aa(P) and S ∈ int(H),
where Q@S = aq(Ad);

– for any agent S ∈ int(H) \ {root(H)}, there
exists an ordinary answer entry 〈Q@S,AID , C,UPS 〉
for par(S) if and only if there exists an ac-
tive finished process P of S such that AID =
pid(P), C = pconst(P), and “←||Q@S” is
the initial goal of P ;

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 9

if gs(P) = ∅ then
change P into a finished process with the same data;
answer 〈Qinit@M, pid(P), pconst(P), nil〉 to the parent;

else
select an atom L from gs(P);
if L is a non-askable atom then

foreach rule R ∈ PM do
C := pconst(P) ∧ (L = head(R)) ∧ const(R);
if C is consistent then

PID := a new process ID; GS := body(R) ∪ gs(P) \ {L};
create an ordinary process 〈PID , C,GS , ∅, aa(P)〉;
foreach answer entry A s.t. 〈aq(A), aid(A)〉 ∈ aa(P) do

ups(A) := ups(A) ∪ {PID};

foreach answer entry A s.t. 〈aq(A), aid(A)〉 ∈ aa(P) do
ups(A) := ups(A) \ {pid(P)};

kill P ;
else // L is an askable atom Q@S.

Q@S := L;
ASp := {Ap | Ap is an ordinary answer entry s.t. aq(Ap) = Q@S};
if ASp 6= ∅ then AS := ASp; AIDo := on;
else AS := {Ad | Ad is a default answer entry s.t. aq(Ad) = Q@S}; AIDo := os;
foreach answer entry A ∈ AS do

C := pconst(P) ∧ aconst(A);
if C is consistent then

PID := a new process ID; GS := gs(P) \ {Q@S}; AA := aa(P) ∪ {〈Q@S, aid(A)〉};
create an ordinary process 〈PID , C,GS , ∅,AA〉;
ups(A) := ups(A) ∪ {PID};
foreach answer entry A′ s.t. 〈aq(A′), aid(A′)〉 ∈ aa(P) do

ups(A′) := ups(A′) ∪ {PID};

select the original answer entry Ao s.t. aq(Ao) = Q@S ∧ aid(Ao) = AIDo;
if AIDo = os ∧ ups(Ao) = ∅ then send a question Q to the child S;
ups(Ao) := ups(Ao) ∪ {pid(P)}; gs(P) := gs(P) \ {Q@S}; wa(P) := {〈Q@S,AIDo〉};

Fig. 7. Process reduction phase for an active ordinary process P .

– for any agent S ∈ ext(H), there exists an or-
dinary answer entry 〈Q@S,AID , C,UPS 〉 for
par(S) if and only if there exists a most re-
cent answer “Q@S ← C||” of S whose answer
identifier is AID .

The first theorem provides the soundness of hi-
erarchical multi-agent systems; i.e. only correct so-
lutions in the sense of the semantics are eventually
computed.

Theorem 1 (soundness of the hierarchically
stable system). For any multi-agent system
〈H,F〉 with Mroot = root(H), any initial goal
“←||Qinit@Mroot”, any hierarchically stable exe-
cution of 〈H,F〉 with a set AH of most recent an-
swers of the external agents, and any active fin-

ished process P of Mroot, there exists a derivation
“←||Qinit@Mroot”, . . . , “← C||” w.r.t. 〈H,F〉
and AH such that πvar(Qinit)(pconst(P)) entails
πvar(Qinit)(C).
Proof. See Appendix.

Intuitively, Theorem 1 claims that, for any ac-
tive finished process P of the root agent in a hier-
archically stable multi-agent system, there exists a
derivation w.r.t. the multi-agent system that yields
a constraint entailed by the constraint of P . We
prove this theorem by induction on the tree struc-
ture of the multi-agent system. At the induction
step, we show that, for any subtree of the multi-
agent system, we can construct such a derivation
by applying Lemma 1.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

10 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

if AIDprev = nil then // A new answer arrived.
create an ordinary answer entry Ap = 〈Q@S,AID , Cp, ∅〉;
foreach default answer entry Ad s.t. aq(Ad) = Q@S do

foreach process Pd s.t. pid(Pd) ∈ ups(Ad) do
C := pconst(Pd) ∧ Cp;
if C is consistent then

PID := a new process ID; WA := wa(Pd) \ {〈Q@S, aid(Ad)〉};
AA := (aa(Pd) \ {〈Q@S, aid(Ad)〉}) ∪ {〈Q@S,AID〉};
create a process 〈PID , C, gs(Pd),WA,AA〉 having the same type as Pd;
ups(Ap) := ups(Ap) ∪ {PID};
if Pd is an active finished process then

answer 〈Qinit@M,PID , C, pid(Pd)〉 to the parent;

else // C is inconsistent.
if Pd is an active finished process then

answer 〈Qinit@M, pid(Pd), false, pid(Pd)〉 to the parent;

wa(Pd) := wa(Pd) ∪ {〈Q@S, aid(Ad)〉}; aa(Pd) := aa(Pd) \ {〈Q@S, aid(Ad)〉};

foreach original answer entry Ao s.t. aq(Ao) = Q@S do
foreach process Po s.t. pid(Po) ∈ ups(Ao) do

C := pconst(Po) ∧ Cp;
if aid(Ao) = os then C := C ∧ (

∧
“Q@S←Cd||”∈∆M

¬Cd);

if C is consistent then
PID := a new process ID; WA := wa(Po) \ {〈Q@S, aid(Ao)〉}; AA := aa(Po)∪ {〈Q@S,AID〉};
create a process 〈PID , C, gs(Po),WA,AA〉 having the same type as Po;
ups(Ap) := ups(Ap) ∪ {PID};

else // A revised answer arrived.
select the ordinary answer entry Ap s.t. aq(Ap) = Q@S ∧ aid(Ap) = AIDprev;
aid(Ap) := AID ; aconst(Ap) := Cp; UPS := ups(Ap);
foreach process P s.t. pid(P) ∈ UPS do

pconst(P) := pconst(P) ∧ Cp;
if P is an active finished process then

answer 〈Qinit@M, pid(P), pconst(P), pid(P)〉 to the parent;

if pconst(P) is consistent then
aa(P) := (aa(P) \ {〈Q@S,AIDprev〉}) ∪ {〈Q@S,AID〉};

else // pconst(P) is inconsistent.
ups(Ap) := ups(Ap) \ {pid(P)};
kill P ;

Fig. 8. Fact arrival phase for an answer 〈Q@S,AID , Cp,AIDprev〉.

The second theorem gives the completeness of
hierarchical multi-agent systems; i.e. all correct so-
lutions in the sense of the semantics are eventually
computed.

Theorem 2 (completeness of the hierarchically
stable system). For any multi-agent system
〈H,F〉 with Mroot = root(H), any initial goal
“←||Qinit@Mroot”, any hierarchically stable ex-
ecution of 〈H,F〉 with a set AH of most recent
answers of the external agents, and any valuation
θ of var(Qinit) that satisfies the answer obtained

from some derivation of “←||Qinit@Mroot” w.r.t.
〈H,F〉 and AH , there exists an active finished pro-
cess P of Mroot such that θ satisfies pconst(P).
Proof. See Appendix.

Intuitively, Theorem 2 states that, if the execu-
tion of a multi-agent system is hierarchically sta-
ble, for any valuation θ obtained from some deriva-
tion w.r.t. the multi-agent system, the root agent
has an active finished process p whose answer in-
cludes θ. We prove this theorem by induction on
the tree structure of the multi-agent system. At

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 11

the induction step, we show that, for any subtree
of the multi-agent system, we can find such an ac-
tive finished process by applying Lemma 2.

5. Implementation

Using the operational model proposed in the
previous section, we have developed a prototype
system, called SpecCp, for speculative constraint
processing for hierarchical multi-agent systems.4

Our current implementation is written in the Ob-
jective Caml5 language, and consists of approx-
imately 2500 lines of code. The system imple-
ments the necessary basic mechanisms for the
CLP scheme, including a finite-domain constraint
solver.6

Instead of truly concurrent execution, the proto-
type system performs pseudo-concurrent execution
of agents in a serialized manner; it performs one
atomic operation of an agent at a time by possibly
selecting different agents one after another. The
system provides an interactive interpreter that al-
lows a user to experiment with various executions.
At every step, a user is prompted to select which
agent to execute next, together with which pro-
cess of the selected agent to reduce, or which an-
swer to be received by the agent. Thus the pseudo-
concurrent execution of agents is completely under
the control of the user.

6. Illustrative Example

This section shows an example of executing a
multi-agent system. We use the multi-agent sys-
tem for the room reservation problem presented in
Example 2. We executed it by running our proto-
type system described in the previous section. Be-
low we illustrate its execution by extracting parts
of the textual output of the prototype system from
the entire output.7

4http://www.informaticians.org/speccp/
5http://caml.inria.fr/ocaml/
6We could have reduced the work if we had implemented

our prototype system on top of a CLP language rather than
Objective Caml, which is a functional programming lan-
guage. However, we adopted Objective Caml simply be-

cause the primary developer has considerable experience in
functional programming.

7We sometimes break a long output line to fit it to the

page.

We begin by asking the root agent r a goal
“← reserve(R, L, D)@r” (Figure 9(a)), and then
obtain the following state of r.8

Answer entries:

Ordinary processes:

(1, {}, {rsv(R,L,D)}, {}, {})

Finished processes:

At present, there is only one ordinary process
whose ID is 1 and that contains the initial goal,
and there is no finished process. Answer entries
exist internally, but are not printed here since they
are not yet used by any processes.

Next, the system indicates that the ordinary
process 1 of agent r can be reduced, and therefore
the user chooses its reduction (by entering “r 1”
after “Which step?”).

SELECT NEXT STEP

Reducible processes (agent pid):

r 1

Receivable answers (receiver sender):

none

Which step?

r 1

Then the system prints out the following state of
agent r, which means that the process was reduced
into the new processes 2, 3, and 4.

Answer entries:

Ordinary processes:

(2, {L=[a,b], R=tr}, {av(D)@a, av(D)@b},

{}, {})

(3, {L=[a], R=sr}, {av(D)@a, unav(D)@b},

{}, {})

(4, {L=[b], R=sr}, {unav(D)@a, av(D)@b},

{}, {})

Finished processes:

After the user selects the reduction of the pro-
cess 2, the system outputs the following, where
agent r sends a question available(D) to its child
agent a.9

Agent r asked: av(D@r#2)@a

Answer entries:

(av(D)@a, os, {true}, {2})

(av(D)@a, d(1), {D:{1,2,3}}, {5})

Ordinary processes:

(2, {L=[a,b], R=tr}, {av(D)@b},

8For brevity, we denote reserve as rsv, available as av,

unavailable as unav, twin room as tr, single room as sr,
free as fr, and busy as bs.

9In the asked question av(D@r#2)@a, the variable D was

renamed into D@r#2 to avoid a conflict of the variable name.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

12 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9. Execution of the multi-agent system in Example 2.

{(av(D)@a, os)}, {})

(3, {L=[a], R=sr}, {av(D)@a, unav(D)@b},

{}, {})

(4, {L=[b], R=sr}, {unav(D)@a, av(D)@b},

{}, {})

(5, {L=[a,b], R=tr, D:{1,2,3}},

{av(D)@b}, {}, {(av(D)@a, d(1))})

Finished processes:

After further two reductions (during which
agent r sends a question available(D) to agent b),
the system yields the following (Figure 9(b)).

Agent r returned to Root_caller

the new answer:

(rsv(R,L,D)@r, p(6),

{R=tr, L=[a,b], D:{1,2,3}}, nil)

Answer entries:

(av(D)@a, os, {true}, {2})

(av(D)@a, d(1), {D:{1,2,3}}, {5,6})

(av(D)@b, os, {true}, {5})

(av(D)@b, d(2), {D:{1,2,3}}, {6})

Ordinary processes:

(2, {L=[a,b], R=tr}, {av(D)@b},

{(av(D)@a, os)}, {})

(3, {L=[a], R=sr}, {av(D)@a, unav(D)@b},

{}, {})

(4, {L=[b], R=sr}, {unav(D)@a, av(D)@b},

{}, {})

(5, {L=[a,b], R=tr, D:{1,2,3}}, {},

{(av(D)@b, os)}, {(av(D)@a, d(1))})

Finished processes:

(6, {L=[a,b], R=tr, D:{1,2,3},

D:{1,2,3}}, {}, {},

{(av(D)@a, d(1)), (av(D)@b, d(2))})

Now we have the first answer R = twin room,
L = [a, b], and D ∈ {1, 2, 3}. Note that it is a
tentative answer speculatively computed from the
default rules of r.

Since agent r sent available(D) to its child agent
a, it soon returns an answer that it speculatively
computes from its default “free(D)@a′ ← D ∈
{1, 2} ||”.

Agent a returned to r the new answer:

(av(D@r#2)@a, p(3), {D@r#2:{1,2}}, nil)

Then agent r returns a revised answer R =
twin room, L = [a, b], and D ∈ {1, 2} (Fig-
ure 9(c)).

Agent r returned to Root_caller

the revised answer:

(rsv(R,L,D)@r, p(7),

{R=tr, L=[a,b], D:{1,2}}, p(6))

Similarly, agent b returns an answer that it com-
putes from its default rule “free(D)@b′ ← D ∈
{2} ||”.

Agent b returned to r the new answer:

(av(D@r#2)@b, p(3), {D@r#2:{2}}, nil)

Then agent r returns a further revised answer
R = twin room, L = [a, b], and D ∈ {2} (Fig-
ure 9(d)).

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 13

Agent r returned to Root_caller

the revised answer:

(rsv(R,L,D)@r, p(9),

{R=tr, L=[a,b], D:{2}}, p(7))

Next, switch our attention to the ordinary pro-
cess 4 of agent r. Its reduction causes r to send a
question unavailable(D) to agent a (Figure 9(e)).

Agent r asked: unav(D@r#4)@a

Then agent a returns an answer that it computes
from its default rule “busy(D)@a′ ← D ∈ {3} ||”
(Figure 9(f)).

Agent a returned to r the new answer:

(unav(D@r#4)@a, p(6), {D@r#4:{3}}, nil)

Next, suppose that the external agent b′ answers
free(D)@b′ by returning D ∈ {2, 3} to agent b.
Then b returns a new answer to agent r after com-
puting the difference.

Agent b returned to r the new answer:

(av(D@r#2)@b, p(5), {D@r#2:{3}}, nil)

Then r returns an answer R = single room, L =
[b], and D ∈ {3} (Figure 9(g)).

Agent r returned to Root_caller

the new answer:

(rsv(R,L,D)@r, p(13),

{R=sr, L=[b], D:{3}}, nil)

Note that this is not a revised answer but a
new answer, which means that the answer R =
twin room, L = [a, b], and D ∈ {2} is still valid.

As illustrated in this example, speculative con-
straint processing for hierarchical multi-agent sys-
tems computes tentative solutions as soon as pos-
sible by using default rules associated with the in-
ternal agents. If such default rules are overridden
by answers returned by child agents, previous an-
swers are replaced with narrower revised ones, or
new answers are incrementally added.

7. Discussion

Speculative constraint processing requires ap-
propriate default rules to obtain good results based
on speculative computation. Therefore, its success
relies on problem domains to which it is applied.
For example, the problems of room reservation
and meeting scheduling are promising examples
for speculative constraint processing, since people
usually have regular schedules that are appropriate
to default rules. However, even if completely in-

appropriate default rules are specified, speculative
constraint processing gives performance that is
comparable to non-speculative computation. This
is because, in such a case, the fact arrival phase im-
mediately suspends the active processes based on
the inappropriate default rules, and then resumes
the previously suspended processes that have been
waiting for the answers. Note that this is similar to
the case of non-speculative computation because it
must wait for answers without proceeding its com-
putation process. Also, it should be noted that,
when a returned answer does not entail but is con-
sistent with the default rule, speculative constraint
processing can immediately output corrected par-
tial results.

As described in Section 1, speculative con-
straint processing handles more expressive ques-
tions than our previous speculative computation
frameworks [16,18,19] that allow only yes/no ques-
tions. However, speculative constraint processing
currently does not support negation that is sup-
ported in the previous yes/no-type frameworks;
in this sense, speculative constraint processing is
not a complete generalization of the yes/no-type
frameworks. Since negation is often useful for mod-
eling problems, it is desirable to further extend
speculative constraint processing to handle nega-
tion.

8. Conclusions and Future Work

In this paper, we proposed a logical frame-
work for speculative constraint processing for hi-
erarchical multi-agent systems. We provided an
operational model for our new framework that
we constructed by extending our previous opera-
tional model for master-slave multi-agent systems.
We also presented a prototype implementation
of the operational model that performs pseudo-
concurrent execution of agents in a serialized man-
ner.

Our future work includes a multi-threaded im-
plementation of our new framework. We have al-
ready developed a multi-threaded implementation
of our previous framework for master-slave multi-
agent systems [11]. We will extend the existing
multi-threaded implementation to cover hierar-
chical multi-agent systems. The resulting multi-
threaded implementation will enable truly concur-
rent execution of agents in a distributed environ-

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

14 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

ment. We are also interested in supporting nega-
tion in speculative constraint processing, since it is
useful for modeling various problems as discussed
in Section 7.

Acknowledgement

This work was supported in part by the Japan
Society for the Promotion of Science, Grant-in-Aid
for Scientific Research (B), 19300053.

Appendix

Proof of Lemma 1. We prove this lemma by in-
duction on the number of steps for the execution
of M .

Induction base. When a query Qinit@M is
asked at the initial step, a process P =
〈PID , true, {Qinit@M}, ∅, ∅〉 is created, and there-
fore this lemma holds.

Induction step. Assume that this lemma holds
for any execution with n steps.

Consider any execution with n + 1 steps. It is
straightforward to show that this lemma holds for
the process reduction phase.

Here we consider the case that the fact arrival
phase treats a new answer 〈Q@S,AID , Cp, nil〉. In
this case, there is no answer entry in the form
〈Q@S,AID , Cp,UPS ′〉.

Let 〈Q@S, d, Cd,UPSd〉 be any default an-
swer entry and Pd be any ordinary process such
that pid(Pd) ∈ UPSd. By the induction hy-
pothesis, Pd satisfies this lemma for some C ′′

and A(n)
Pd

; i.e. there is a sequence of reductions
“←||Qinit@M”, . . . , “← C1 ||{Q@S} ∪ GS”, “←
C1 ∧ Cd ||GS”, . . . , “← C1 ∧ Cd ∧ C2 ||{Q′@S′ |
〈Q′@S′, os〉 ∈ wa(Pd) ∨ 〈Q′@S′, on〉 ∈ wa(Pd)} ∪
gs(Pd)” w.r.t. msres(M, 〈H,F〉) and A(n)

Pd
such

that πvar(Qinit)(pconst(Pd)) entails πvar(Qinit)(C1 ∧
Cd ∧ C2), where C1 and C2 are the constraints
obtained before and after processing Q@S respec-
tively.

Assume that pconst(Pd) ∧ Cp is consistent.
Then a process P = 〈PID , pconst(Pd) ∧
Cp, gs(Pd), wa(Pd)\{〈Q@S, d〉}, (aa(Pd)\{〈Q@S, d〉})∪
{〈Q@S,AID〉}〉 is created, and we have A(n+1)

P =
(A(n)

Pd
\ {“Q@S ← Cd||”}) ∪ {“Q@S ← Cp||”}.

Then we can consider the sequence of reductions

“←||Qinit@M”, . . . , “← C1 ||{Q@S} ∪ GS”, “←
C1 ∧ Cp ||GS”, . . . , “← C1 ∧ Cp ∧ C2 ||{Q′@S′ |
〈Q′@S′, os〉 ∈ wa(P) ∨ 〈Q′@S′, on〉 ∈ wa(P)} ∪
gs(P)” w.r.t. msres(M, 〈H,F〉) and A(n+1)

P . Then
πvar(Qinit)(pconst(P)) entails πvar(Qinit)(C1 ∧ Cp ∧
C2) since pconst(P) = Cp ∧ pconst(Pd) and
πvar(Qinit)(pconst(Pd)) entails πvar(Qinit)(C1 ∧Cd ∧
C2). Thus this lemma holds for P .

If there exists no ordinary answer entry Ap

such that aq(Ap) = Q@S, this step changes Pd

by setting wa(Pd) := wa(Pd) ∪ {〈Q@S, d〉} and
aa(Pd) := aa(Pd) \ {〈Q@S, d〉}, and hence we
have A(n+1)

Pd
= A(n)

Pd
\ {“Q@S ← Cd||”}. Other-

wise, Pd is unchanged since 〈Q@S, d〉 ∈ wa(Pd)
and 〈Q@S, d〉 /∈ aa(Pd) hold for the original Pd,
and thus we have A(n+1)

Pd
= A(n)

Pd
. Therefore, this

lemma is kept satisfied for Pd.
Next, let Ao be any original answer entry and

Po be any ordinary process such that aq(Ao) =
Q@S and pid(Po) ∈ ups(Ao). By the induc-
tion hypothesis, Po satisfies this lemma for some
C ′′ and A(n)

Po
; i.e. there is a sequence of re-

ductions “←||Qinit@M”, . . . , “← C ′′ ||{Q@S} ∪
gs(Po)” w.r.t. msres(M, 〈H,F〉) and A(n)

Po
such

that πvar(Qinit)(pconst(Po)) entails πvar(Qinit)(C
′′).

Since this step does not change Po, this lemma is
kept satisfied for Po.

Assume that aid(Ao) = os and pconst(Po) ∧
Cp ∧ (

∧
“Q@S←Cd||”∈∆M

¬Cd) is consistent. Then
a process P = 〈PID , pconst(Po) ∧ Cp ∧∧

“Q@S←Cd||”∈∆M
¬Cd, gs(Po), wa(Po)\{〈Q@S, os〉},

aa(Po) ∪ {〈Q@S,AID〉}〉 is created, and we have
A(n+1)

P = A(n)
Po
∪ {“Q@S ← Cp||”}. Then

we can consider the sequence of reductions
“←||Qinit@M”, . . . , “← C ′′ ||{Q@S} ∪ gs(P)”,
“← C ′′ ∧ Cp || gs(P)” w.r.t. msres(M, 〈H,F〉)
and A(n+1)

P . Then πvar(Qinit)(pconst(P)) entails
πvar(Qinit)(C

′′∧Cp) since pconst(P) = pconst(Po)∧
Cp∧

∧
“Q@S←Cd||”∈∆M

¬Cd and πvar(Qinit)(pconst(Po))
entails πvar(Qinit)(C

′′). Therefore, this lemma holds
for P . Also, if aid(Ao) = on, we can similarly show
that this lemma holds for the created process.

This lemma is kept satisfied for the other pro-
cesses that are not handled in this case, since those
processes and their most recent answer sets are un-
changed. Therefore, this lemma holds for any pro-
cesses after processing a new answer in the fact
arrival phase.

Similarly, we can show that this lemma holds for
the case that the fact arrival phase treats a revised
answer. Thus this lemma holds in all the cases.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 15

Proof of Lemma 2. We prove this lemma by in-
duction on the number of steps for the execution
of M .

Induction base. When Qinit@M is asked at the
initial step, a process P = 〈PID , true, {Qinit@M}, ∅, ∅〉
is created, and therefore this lemma holds.

Induction step. Assume that this lemma holds
for any execution with n steps.

Consider any execution with n + 1 steps. We
can construct a “reduced” execution by skipping
the last process reduction phase while keeping the
other process reduction phases and all the fact ar-
rival phases. Note that this reduced execution con-
sists of n steps and has the same set of most recent
answers as the original execution that consists of
n + 1 steps. Then we have the following cases: (A)
the skipped process reduction phase treats a non-
askable atom; (B) the skipped process reduction
phase treats an askable atom Q@S.

Consider case (A). By the induction hypothe-
sis and the completeness of the CLP scheme, it is
straightforward to show that this lemma holds.

Next, consider case (B). If there exists an ac-
tive process P ′ of M such that P ′ remains both in
the original and reduced executions, and that θ is
derived from P ′, this lemma clearly holds. Next,
assume that there exists no such active process
P ′ of M . Let P be the process in the original ex-
ecution for which the process reduction phase is
skipped in the reduced execution. We assume for
simplicity that 〈Q@S,AID〉 6∈ aa(P) for any AID ,
and also that there exists no ordinary answer en-
try Ap such that aq(Ap) = Q@S. Consider any
sequence of active processes successively derived
from P in the original execution by using a default
rule “Q@S ← Ci

d||”. Since the skipped process re-
duction phase is the last one, these processes ex-
cept the first one come from the remaining fact ar-
rival phases. Let Ci

d, C0
1 , . . . , C0

l0
, C1

p , C1
1 , . . . , C1

l1
,

C2
p , C2

1 , . . . , C2
l2

, . . . , Cm
p , Cm

1 , . . . , Cm
lm

be the con-
straints successively added in this order to these
processes, where C1

p is a new answer w.r.t. Q@S,
each Cj

p (2 ≤ j ≤ m) is a revised answer whose
previous answer is Cj−1

p , and each Cj
k (0 ≤ j ≤ m

and 1 ≤ k ≤ lj) is an answer w.r.t. another ask-
able atom than Q@S. By contrast, in the reduced
execution, because of the skipped process reduc-
tion phase, the constraints C0

1 , . . . , C0
l0

, C1
1 , . . . ,

C1
l1

, C2
1 , . . . , C2

l2
, . . . , Cm

1 , . . . , Cm
lm

are added, and
Q@S remains in the goal of the resulting process.
By the induction hypothesis, θ must be derived

from such a resulting process in the reduced exe-
cution. If θ is derived from the corresponding pro-
cess in the original execution that uses some Ci

d,
this lemma holds. Otherwise, we can choose an al-
ternative sequence of active processes successively
derived from P that use the following constraints:
C0

1 , . . . , C0
l0

, C1
p ∧ (

∧
“Q@S←Ci

d
||”∈∆M

¬Ci
d), C1

1 ,
. . . , C1

l1
, C2

p , C2
1 , . . . , C2

l2
, . . . , Cm

p , Cm
1 , . . . ,

Cm
lm

. Thus θ is derived from the resulting process
in the original execution. Therefore, this lemma
holds.

Proof of Theorem 1. We prove this theorem by
induction on the tree structure of 〈H,F〉. For this
purpose, we introduce hierarchical restrictions of
〈H,F〉. Let F = {〈∆M ′ ,PM ′〉}M ′∈int(H). The hi-
erarchical restriction of 〈H,F〉 to an agent M ∈
int(H), written hres(M, 〈H,F〉), is defined as the
the multi-agent system 〈HM ,FM 〉, where HM is
the agent hierarchy consisting of M as the root
and all the descendant agents of M in H, and
FM = {〈∆M ′ ,PM ′〉}M ′∈int(HM). We also define
height(HM) as the height of HM , i.e. the number
of the agents along the longest path from the root
to an external agent of HM . Below we prove the
proposition (∗) that, for any M ∈ int(H) and any
active finished process PM of M , there exists a
derivation “←||QPM

@M”, . . . , “← CPM
||” w.r.t.

〈HM ,FM 〉 = hres(M, 〈H,F〉) and AH such that
πvar(QPM

)(pconst(PM)) entails πvar(QPM
)(CPM).

Induction base. Consider any M ∈ int(H) such
that height(HM) = 2 (which is the minimum).
Since all the children of M are external agents, (∗)
holds by Lemma 1.

Induction step. Assume that, for any M ∈
int(H) such that height(HM) ≤ n, (∗) holds. Con-
sider any M ∈ int(H) such that height(HM) =
n + 1. Let PM be an arbitrary active finished pro-
cess of M . Then, for any 〈Q@S,AID〉 ∈ aa(PM),
we have the following cases: (A) S ∈ ext(H); (B)
S ∈ int(H).

Consider case (A). There exists an answer en-
try 〈Q@S,AID , CS ,UPS 〉 for M . If it is an ordi-
nary answer entry, there exists a most recent an-
swer “Q@S ← CS ||” in AH ; otherwise, it is a de-
fault answer entry, and there exists a default rule
“Q@S ← CS ||” in ∆M . Thus “Q@S ← CS ||” is in
bel(AH , 〈HM ,FM 〉).

Next, consider case (B). There exist an ordinary
answer entry 〈Q@S,AID , CS ,UPS 〉 for M and an
active finished process PS of S such that AID =

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

16 H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents

pid(PS) and CS = pconst(PS). By the induction
hypothesis, there exists a derivation “←||Q@S”,
. . . , “← CPS

||” w.r.t. hres(S, 〈H,F〉) and AH such
that πvar(Q)(CS) entails πvar(Q)(CPS

).
Let “←||QPM @M” be the initial goal of

PM . By Lemma 1, there exists a sequence
of reductions “←||QPM

@M”, . . . , “← C ′′||”
w.r.t. msres(M, 〈H,F〉) and APM such that
πvar(QPM

)(pconst(PM)) entails πvar(QPM
)(C ′′), where

APM
= {“Q@S ← C ′||” | there exists an

answer entry 〈Q@S,AID , C ′,UPS 〉 for M such
that 〈Q@S,AID〉 ∈ aa(PM)}. Then, replacing
each reduction using “Q@S ← CS ||” for S ∈
int(H) with the same reductions as in “←||Q@S”,
. . . , “← CPS

||” above, we can construct a
derivation “←||QPM

@M”, . . . , “← CPM
||” w.r.t.

〈HM ,FM 〉 and AH . Also, since πvar(Q)(CS) entails
πvar(Q)(CPS) for any CS , πvar(QPM

)(pconst(PM))
entails πvar(QPM

)(CPM
).

Proof of Theorem 2. We prove this theorem by
induction on the tree structure of 〈H,F〉. As in the
proof of Theorem 1, we use hierarchical restrictions
of 〈H,F〉 and their heights. Below we prove the
proposition (∗) that, for any M ∈ int(H) and any
valuation θM of var(QM) that satisfies the answer
obtained from some derivation of “←||QM@M”
w.r.t. 〈HM ,FM 〉 = hres(M, 〈H,F〉) andAH , there
exists an active finished process PM of M such
that θM satisfies pconst(PM).

Induction base. Consider any M ∈ int(H) such
that height(HM) = 2. Since all the children of M
are external agents, (∗) holds by Lemma 2.

Induction step. Assume that, for any M ∈
int(H) such that height(HM) ≤ n, (∗) holds. Con-
sider any M ∈ int(H) such that height(HM) =
n+1. Define AM as in Lemma 2. Let θM be an ar-
bitrary valuation as defined for (∗). Then, for any
“Q@S ← CS ||” with S ∈ chi(M, H) that is used
in the derivation of “←||QM@M”, we have the
following cases: (A) S ∈ ext(H); (B) S ∈ int(H).

Consider case (A). Then any “Q@S ← CS ||” in
AH is also in AM .

Next, consider case (B). By the induction hy-
pothesis, for any valuation θS of var(Q) that sat-
isfies the answer obtained from some derivation
of “Q@S ← CS ||”, there exists an active finished
process PS of S such that θS satisfies pconst(PS).
Because of the hierarchical stability, “Q@S ←
pconst(PS)||” is in AM .

Thus we can construct a derivation “←||QM@M”,
. . . , “← CM ||” w.r.t. msres(M, 〈H,F〉) and AM

such that θM satisfies CM . Then, by Lemma 2,
there exists an active finished process PM of M
such that θM satisfies pconst(PM).

References

[1] F. W. Burton. Speculative computation, parallelism,
and functional programming. IEEE Trans. Comput.,

34(12):1190–1193, 1985.

[2] M. Ceberio, H. Hosobe, and K. Satoh. Speculative con-

straint processing with iterative revision for disjunc-
tive answers. In Post-proc. Intl. Workshop on Compu-
tational Logic in Multi-Agent Systems (CLIMA-VI),
volume 3900 of LNAI, pages 340–357, 2006.

[3] S. Gregory. Experiments with speculative parallelism
in Parlog. In Proc. Intl. Symp. on Logic Programming
(ILPS’93), pages 370–387, 1993.

[4] A. B. Hassine, X. Defago, and T. B. Ho. Agent-based
approach to dynamic meeting scheduling problems. In
Proc. Intl. Joint Conf. on Autonomous Agents and

Multiagent Systems (AAMAS2004), pages 1132–1139,
2004.

[5] H. Hosobe, K. Satoh, and P. Codognet. Agent-based

speculative constraint processing. IEICE Trans. Inf.
& Syst., E90-D(9):1354–1362, 2007.

[6] K. Inoue and K. Iwanuma. Speculative computation
through consequence-finding in multi-agent environ-
ments. Ann. Math. Artif. Intell., 42(1–3):255–291,
2004.

[7] J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The
semantics of constraint logic programs. J. Log. Pro-
gram., 37(1–3):1–46, 1998.

[8] S. Janson and S. Haridi. Programming paradigms of
the Andorra Kernel Language. In Proc. Intl. Symp. on
Logic Programming (ISLP’91), pages 167–183, 1991.

[9] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of
abduction in logic programming. In Handbook of Logic
in Artificial Intelligence and Logic Programming, vol-

ume 5, pages 235–324. Oxford University Press, 2006.

[10] R. Kowalski and F. Sadri. From logic programming to-
wards multi-agent systems. Ann. Math. Artif. Intell.,

25(3–4):391–419, 1999.

[11] J. Ma, A. Russo, K. Broda, H. Hosobe, and K. Satoh.

On the implementation of speculative constraint pro-
cessing. In Proc. Intl. Workshop on Computational
Logic in Multi-Agent Systems (CLIMA-X), pages 105–
120, 2009.

[12] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
Adopt: Asynchronous distributed constraint optimiza-
tion with quality guarantees. Artif. Intell., 161(1–

2):149–180, 2005.

[13] L. Morgenstern. A formal theory of multiple agent
nonmonotonic reasoning. In Proc. Natl. Conf. on Ar-

tificial Intelligence (AAAI-90), pages 538–544, 1990.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

H. Hosobe et al. / Speculative Constraint Processing for Hierarchical Agents 17

[14] R. Reiter. A logic for default reasoning. Artif. Intell.,
13(1–2):81–132, 1980.

[15] C. Sakama, K. Inoue, K. Iwanuma, and K. Satoh. A de-
feasible reasoning system in multi-agent environments.
In Proc. Intl. Workshop on Computational Logic in
Multi-Agent Systems (CLIMA-00), pages 1–6, 2000.

[16] K. Satoh. Speculative computation and abduction for
an autonomous agent. IEICE Trans. Inf. & Syst., E88-
D(9):2031–2038, 2005.

[17] K. Satoh, P. Codognet, and H. Hosobe. Specu-
lative constraint processing in multi-agent systems.
In Proc. Pac. Rim Intl. Workshop on Multi-Agents

(PRIMA2003), volume 2891 of LNAI, pages 133–144,
2003.

[18] K. Satoh, K. Inoue, K. Iwanuma, and C. Sakama. Spec-
ulative computation by abduction under incomplete
communication environments. In Proc. Intl. Conf. on
Multi-Agent Systems (ICMAS2000), pages 263–270,

2000.

[19] K. Satoh and K. Yamamoto. Speculative computation
with multi-agent belief revision. In Proc. Intl. Joint

Conf. on Autonomous Agents and Multiagent Systems
(AAMAS2002), pages 897–904, 2002.

[20] G. Smolka. The Oz programming model. In Computer

Science Today: Recent Trends and Developments, vol-
ume 1000 of LNCS, pages 324–343, 1995.

[21] R. J. Wallace and E. C. Freuder. Constraint-based rea-

soning and privacy/efficiency tradeoffs in multi-agent
problem solving. Artif. Intell., 161(1–2):209–227, 2005.

[22] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem: For-
malization and algorithms. IEEE Trans. Knowl. Data
Eng., 10(5):673–685, 1998.

© 2010 IOS Press and the Authors
This is the author's version. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-2010-0480.

